- 27.40 Кб

Министерство образования и науки Российской Федерации

Северо-Западный Институт Печати

Кафедра книгоиздания и книжной торговли

РЕФЕРАТ

По дисциплине:

Концепции современного естествознания

Этапы развития науки

                      Выполнила:

                      Исхакова А.Е

                  Специальность:

                      Журналистика

                      Группа: Жд.1.2

                      Проверил:

                      Романенко В.Н

Санкт-Петербург

2011

Структура

  1. Введение
  2. Заглавие
  3. Причины и предпосылки возникновения науки. Нулевой этап.
  4. 1 этап - Древняя Греция
  5. 2 этап - Средневековая европейская наука
  6. 3 этап - Новоевропейская классическая наука (15-16 вв).
  7. 4 этап - 20 век – набирает силу неклассическая наука.
  8. 5 этап - Постнеклассическая наука
  9. Заключение
  10. Список используемой литературы

Заглавие

Наука - особый вид познавательной деятельности, направленной на получение, уточнение и распространение объективных, системно-организованных и обоснованных знаний о природе, обществе и мышлении. Основой этой деятельности является сбор научных фактов, их постоянное обновление и систематизация, критический анализ и, на этой базе, синтез новых научных знаний или обобщений, которые не только описывают наблюдаемые природные или общественные явления, но и позволяют построить причинно-следственные связи и, как следствие, - прогнозировать. Те естественнонаучные теории и гипотезы, которые подтверждаются фактами или опытами, формулируются в виде законов природы или общества.

Наука в широком смысле включает в себя все условия и компоненты научной деятельности:

  • разделение и кооперацию научного труда;
  • научные учреждения, экспериментальное и лабораторное оборудование;
  • методы научно-исследовательской работы;
  • понятийный и категориальный аппарат;
  • систему научной информации;
  • а также всю сумму накопленных ранее научных знаний.

Как своеобразная форма познания - специфический тип духовного производства и социальный институт - наука возникла еще в Древней Греции и до сих пор является важнейшей отраслью нашей жизни. Мой реферат поможет изучить и упорядочить информацию становления науки.

Причины возникновения науки:

Первой и главной причиной возникновения науки является ф ормирование субъектно-объектных отношений между человеком и природой, между человеком и окружающей его средой . Это связано, в первую очередь, с переходом человечества от собирательства к производящему хозяйству. Так, уже в эпоху Палеолита человек создаёт первые орудия труда из камня и кости - топор, нож, скребло, копьё, лук, стрелы, овладевает огнём и строит примитивные жилища. В эпоху Мезолита человек плетёт сеть, делает лодку, занимается обработкой дерева, изобретает лучковое сверло. В период Неолита (до 3000 г. до н. э.) человек развивает гончарное ремесло, осваивает земледелие, занимается изготовлением глиняной посуды, использует мотыгу, серп, веретено, глиняные, бревенчатые, свайные постройки, овладевает металлами. Использует животных в качестве тягловой силы, изобретает колёсные повозки, гончарное колесо, парусник, меха. К началу первого тысячелетия до нашей эры появляются орудия труда из железа.

Второй причиной формирования науки является усложнение познавательной деятельности человека. «Познавательная», поисковая активность характерна и для животных, но в силу усложнения предметно-практической деятельности человека, освоения человеком различных видов преобразующей деятельности, происходят глубокие изменения в структуре психики человека, строении его мозга, наблюдаются изменения в морфологии его тела.

Предпосылки возникновения науки:

Развитие науки было составной частью общего процесса интеллектуального развития человеческого разума и становления человеческой цивилизации. Нельзя рассматривать развитие науки в отрыве от следующих процессов:

  • Формирование речи;
  • Развитие счёта;
  • Возникновение искусства;
  • Формирование письменности;
  • Формирование мировоззрения (миф);
  • Возникновение философии.

Для того чтобы определить основные этапы науки мы должны начать с ее возникновения. Итак, как же возникла наука? Существует пять точек зрения:

  • Наука была всегда, начиная с момента зарождения человеческого общества, так как научная любознательность органично присуща человеку;
  • Наука возникла в Древней Греции, так как именно здесь знания впервые получили свое теоретическое обоснование (общепринятое);
  • Наука возникла в Западной Европе в XII-XIV вв., поскольку проявился интерес к опытному знанию и математике;
  • Наука начинается в XVI-XVIIвв., и благодаря работам Г. Галилея, И. Кеплера, X. Гюйгенса и И. Ньютона, создается первая теоретическая модель физики на языке математики;
  • Наука начинается с первой трети XIXв., когда исследовательская деятельность была объединена с высшим образованием.

    Наука существовала еще в доисторическом обществе и древнем мире. Мы можем назвать этот этап - нулевым. В доисторическом обществе и древней цивилизации знание существовало в рецептурном виде, т.е. знания были неотделимы от умения и неструктурированны. Эти знания являлись дотеоретическими, несистематичными, отсутствовали абстракции. К вспомогательным средством дотеоретического знания мы относим: миф, магию, ранние формы религии. Миф (повествование) – рациональное отношение человека к миру. Магия – сами действия. Магия мыслит взаимосвязанными процессами физической, ментальной, символической и иной природы.

    Основные идеи абстрактно-теоретического мышления в древнегреческой философии. В античной культуре древней Греции появляется теоретическое, систематическое и абстрактное мышление. В основе лежит идея особого знания (общее знание, первое знание). У древних греков появляется архе-первый (начало); физис-природа (то из чего происходит вещь). Начало у вещей одно, а природа различна. Это были два концентрата теоретического мышления. Там же возникли: закон идентичности, закон исключения третьего, закон непротиворечия, закон достаточного основания. Это систематический подход. Первые теории создавались в философии для нужд философии. Теория начинает соединяться с научными знаниями во 2-м веке до н.э. Версии возникновения теории: уникальная экономика, греческая религия.

    Этапы развития науки

1 этап – Древняя Греция – возникновение науки в социуме с провозглашением геометрии, как науки об измерении земли. Объект исследования – мегамир (вкл. вселенную во всём многообразии).

  • работали не с реальными предметами, не с эмпирическим объектом, а с математическими моделями – абстракциями.
  • Из всех понятий выводились аксиома и опираясь на них с помощью логического обоснования выводили новые понятия.

Идеалы и нормы науки : знание раде знаний. Метод познания – наблюдение.

Науч. картина мира: носит интегративный хар-р, основана на взаимосвязи микро- и макрокосмоса.

Филос. основания науки : Ф. – наука наук. Стиль мышления – интуитивно диалектический. Антропокосмизм – человек есть органическая часть мирового космического процесса.

2 этап – Средневековая европейская наука – наука превратилась в служанку богословия. Противоборство между номиналистами (единичные вещи) и реалистами (универсальные вещи).

Объект исследования – макромир (Земля и ближайший космос).

Идеалы и нормы науки : Знание – сила. Индуктивно эмпирический подход. Механицизм. Противопоставление объекта и субъекта.

Научная картина мира : Ньютоновская классическая механика; гелиоцентризм; божественное происхождение окр. мира и его объектов; мир – сложно действующий механизм.

Филос. основания науки : Механистический детерминизм. Стиль мышления – механистично метафизический (отрицание внутреннего противоречия)

  • научное знание ориентируется на теологизм
  • ориентировано на специфическое обслуживание интересов ограниченного числа
  • возникают научные школы, провозглашается приоритет эмпирического познания в исследовании окружающей действительности (идёт разделение наук).

3 этап – Новоевропейская классическая наука (15-16 вв).

Объект исследования – микромир. Совокупность элементарных частиц. Взаимосвязь эмпирического и рационального уровня познаний.

Идеалы и нормы науки : принцип зависимости объекта от субъекта. Сочетание теоретического и практического направлений.

Научная картина мира : формирование частно научных картин мира (химическая, физическая …)

Филос. основания науки : диалектика – стиль естественнонаучного мышления.

  • Культура постепенно освобождается от господства церкви.
  • первые попытки убрать схоластику догматизм
  • интенсивное развитие экономики
  • лавиноообразный интерес к научному знанию.

    Особенности периода:

  • научная мысль начинает фокусироваться на получение объективно истинного знания с уклоном в практическую полезность
  • попытка анализа и синтеза рациональных зерен преднауки
  • начинают преобладать экспериментальные знания
  • наука формируется как социальный институт (ВУЗы, научные книги)
  • начинают выделяться технические и социально-гуманитарные науки Огюст Конт

4 этап – 20 век – набирает силу неклассическая наука .

Объект исследования – микро-, макро- и мегамир. Взаимосвязь эмпирического, рационального и интуитивного познания.

Идеалы и нормы науки : аксиологизация науки. Повышение степени "фундаментализации" прикладных наук.

Научная картина мира : формирование общенаучной картины мира. Преобладание представления о глобальном эволюционизме (развитие – атрибут, присущий всем формам объективной реальности). Переход от антропоцентризму к биосфероцентризму (человек, биосфера, космос – во взаимосвязи и единстве).

Философское основания науки : синергетический стиль мышления (интегративность, нелинейность, бифуркационность)

5 этап: Постнеклассическая наука – современный этап развития научного познания.

Объект исследования : исторически развивающиеся системы - Земля как система взаимодействия геологических, биологических и техногенных процессов; Вселенная как система взаимодействия мик­ро-, макро- и мегамира и др.

Идеалы и нормы науки: единство многообразия вещей, свойств и отношений на основе соответствующей философской трактовки категорий материи, движения, пространства и времени

Введение
Заглавие
Причины и предпосылки возникновения науки. Нулевой этап.
1 этап - Древняя Греция
2 этап - Средневековая европейская наука
3 этап - Новоевропейская классическая наука (15-16 вв).
4 этап - 20 век – набирает силу неклассическая наука.
5 этап - Постнеклассическая наука
Заключение
Список используемой литературы


Начнем с того, что история науки отличается неравномерностью развития в пространстве и во времени: огромные вспышки активности сменяются длительными периодами затишья, продолжающимися до новой вспышки, часто уже в другом регионе. Но место и время усиления научной активности никогда не были случайными: периоды расцвета науки обычно совпадают с периодами усиления экономической активности и технического прогресса. С течением времени центры научной активности перемещались в другие регионы Земли и, скорее, следовали за перемещениями центров торговой и промышленной деятельности, нежели направляли ее.

Современной науке предшествует преднаука в виде отдельных элементов знаний, возникших в древних обществах (шумерская культура, Египет, Китай, Индия). Древнейшие цивилизации выработали и накопили большие запасы астрономического, математического, биологического, медицинского знания. Но это знание не выходило за рамки преднауки, оно носило рецептурный характер, излагалось главным образом как предписания для практики - для ведения календарей, измерения земли, предсказания разливов рек, приручения и селекции животных. Такое знание, как правило, имело сакральный характер. Слив с религиозными представлениями его хранили и передавали из поколения в поколение жрецы, оно не приобрело статуса объективного знания о естественных процессах.

Около двух с половиной тысячелетий назад центр научной активности с Востока переместился в Грецию, где на основе критики религиозно-мифологических систем был выработан рациональный базис науки. В отличие от разрозненных наблюдений и рецептов Востока греки перешли к построению теорий - логически связанных и согласованных систем знания, предполагающих не просто констатацию и описание фактов, но и их объяснение и осмысление во всей системе понятий данной теории. Становление собственно научных, обособленных и от религии, и от философии форм знания, обычно связывают с именем Аристотеля, заложившего первоначальные основы классификации различных знаний. В качестве самостоятельной формы общественного сознания наука стала функционировать в эпоху эллинизма, когда целостная культура античности начала дифференцироваться на отдельные формы духовной деятельности.

В античной науке господствует идея незыблемости, опирающаяся на чувственное наблюдение и здравый смысл . Вспомним физику Аристотеля, в которой чувственное наблюдение и здравый смысл – и только они – определяют характер методологии объяснения мира и совершающихся в нем событий. Его учение делит мир на две области, по своим физическим свойствам качественно отличные друг от друга: на область Земли («подлунный мир») – область постоянных изменений и превращений - и область эфира («надлунный мир») – область всего вечного и совершенного. Отсюда вытекает положение о невозможности общей количественной физики неба и Земли, а в конечном итоге – положение, возводящее в ранг мировоззренческой доминанты геоцентрические идеи. Именно такой философский подход и вел к тому, что физика «подлунного мира» не нуждается в математике – науке, как ее понимали в античности, об идеальных объектах. Зато в ней нуждается астрономия, которая изучает совершенный «надлунный мир». Представления Аристотеля о движении и силе выражали лишь данные непосредственного наблюдения и опирались не на математику, а на здравый смысл. В физике древних ничего не говорилось об идеализированных объектах, таких как абсолютно твердое тело, материальная точка, идеальный газ, и не говорилось именно потому, что эта физика была чужда контролируемому экспериментированию. Повседневный опыт или непосредственное наблюдение служили краеугольным камнем познания, что не давало возможности ставить вопросы, относящиеся к сущности наблюдаемых явлений, а, следовательно, к установлению законов природы. Аристотель, вероятно, крайне удивился бы тому, как современный ученый изучает природу - в отгороженной от мира научной лаборатории, при искусственно созданных и контролируемых условиях, активно вмешиваясь в естественное протекание природных процессов.

Религиозное средневековье не изменило существенно это положение вещей. Только в позднее средневековье со времени крестовых походов развитие промышленности вызвало к жизни массу новых механических, химических и физических фактов, доставивших не только материал для наблюдений, но также и средства для экспериментирования. Развитие производства и связанный с этим рост техники в эпоху Возрождения и Новое время способствовали развитию и распространению экспериментальных и математических методов исследования. Революционные открытия в естествознании, сделанные в эпоху Возрождения, получили дальнейшее развитие в Новое время, когда наука стремительно начала входить в жизнь как особый социальный институт и необходимое условие функционирования всей системы общественного производства. Это относится прежде всего к естествознанию в современном понимании, переживавшему в это время период своего становления.

Что нового внесла наука Нового времени в представления о мире?

Идея незыблемости философских и научных ценностей, опирающаяся на здравый смысл, была отвергнута философской мыслью и естествознанием Нового времени. Физика становится экспериментальной наукой , чувственное наблюдение соединяется с теоретическим мышлением, на научную сцену выходят методы абстрагирования и связанная с ними математизация знания. Данные экспериментов описываются уже не понятиями здравого смысла, а осмысливаются теорией, в которой соотносятся понятия, далекие по содержанию от чувственной непосредственности. Пространство, время и материя стали интересовать исследователей с количественной стороны, и даже если не отрицалась идея творения природы, то предполагалось, что Творец – математик и сотворил природу по законам математики. Галилей утверждал, что природа должна изучаться с помощью опыта и математики, а не с помощью Библии или чего-то еще. Экспериментальный диалог с природой подразумевает активное вмешательство, а не пассивное наблюдение. Исследуемое явление должно быть предварительно препарировано и изолировано с тем, чтобы оно могло служить приближением к некоторой идеальной ситуации, возможно физически недостижимой, но согласующейся с принятой концептуальной схемой. Природа, как бы на судебном заседании, подвергается с помощью экспериментирования перекрестному допросу именем априорных принципов. Ответы природы записываются с величайшей точностью, но их правильность оценивается в терминах той идеализации, которой исследователь руководствуется при постановке эксперимента. Все остальное считается не информацией, а вторичными эффектами, которыми можно пренебречь. Недаром в эпоху становления науки Нового времени в европейской культуре бытовало широко распространенное сравнение эксперимента с пыткой природы, посредством которой исследователь должен выведать у природы ее сокровенные тайны. В представлениях о науке как предприятии, все глубже и глубже проникающем в тайны бытия, сказывается рационалистическая установка, согласно которой деятельность науки представляет собой процесс, направленный на окончательное разоблачение тайн бытия.

Основатели современной науки прозорливо усматривали в диалоге между человеком и природой важный шаг к рациональному постижению природы. Но претендовали они на гораздо большее. Галилей и те, кто пришел после него, разделяли убеждение в том, что наука способна открывать глобальные истины о природе. По их мнению, природа не только написана на математическом языке, поддающемся расшифровке с помощью надлежаще поставленных экспериментов, но и сам язык природы единственен. Отсюда уже недалеко до вывода об однородности мира и, следовательно, доступности постижения глобальных истин с помощью локального экспериментирования. Сложность природы была провозглашена кажущейся, а разнообразие природы – укладывающемся в универсальные истины, воплощенные в математических законах движения. Природа проста и не роскошествует излишними причинами вещей, учил Ньютон. Эта была наука, познавшая успех, уверенная, что ей удалось доказать бессилие природы перед проницательностью человеческого разума.

Эти и другие подобные представления подготовили переворот в науке Нового времени, завершившийся созданием механики Галилея-Ньютона - первой естественнонаучной теории. Теоретическое естествознание, возникшее в эту историческую эпоху, получило название «классическая наука » и завершило долгий процесс становления науки в собственном смысле слова.

Методологию классической науки очень четко выразил французский математик и астроном П.Лаплас. Он считал, что природа сама по себе подчинена жестким, абсолютно однозначным причинным связям, а если мы не всегда наблюдаем эту однозначность, то только в силу ограниченности наших возможностей. «Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если вдобавок, он оказался бы достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями мельчайших атомов: не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы перед его взором». С точки зрения Лапласа, идеальным примером научной теории является небесная механика, в которой на основании законов механики и закона всемирного тяготения удалось дать объяснение «всех небесных явлений в их малейших подробностях». Она не только привела к пониманию огромного количества явлений, но и дала образец «истинной методы исследования законов природы».

Классическая научная картина мира базируется на представлении качественной однородности явлений природы. Все многообразие процессов ограничивается макромеханическим движением, все природные связи и отношения исчерпываются замкнутой системой вечных и неизменных законов классической механики. В отличие от античных и тем более средневековых представлений природа рассматривается с точки зрения естественного порядка, в котором имеют место только механические объекты.

Все крупнейшие физики конца Х1Х и начала ХХ столетий полагали, что все великие и вообще все мыслимые открытия в физике уже совершились, что установленные законы и принципы незыблемы, возможны только их новые приложения и что, следовательно, дальнейшее развитие физической науки будет заключаться только лишь в уточнении второстепенных деталей. Теоретическая физика представлялась многим в основном завершенной наукой, исчерпавшей свой предмет. Знаменательно, что один из крупнейших физиков того времени В.Томсон, выступая с речью по поводу начала нового века, сказал, что физика превратилась в развитую, завершенную систему знаний, а дальнейшее развитие будет состоять лишь в некоторых доделках и повышении уровня физических теорий. Правда, он заметил, что красота и ясность динамических теорий тускнеет из-за двух маленьких «туч» на ясном небосводе: одна – отсутствие эфирного ветра, другая – так называемая «ультрафиолетовая катастрофа». Несмотря на то, что во второй половине Х1Х в. механистические представления о мире были существенно поколеблены новыми революционными идеями в области электромагнетизма (М.Фарадей, Дж.Максвелл), а также каскадом научных открытий, необъяснимых на основе законов классической науки, механистическая картина мира оставалась господствующей до конца Х1Х в.

И вот на фоне этой веками складывавшейся уверенности многих ученых в абсолютной несокрушимости установленных ими и их предшественниками законов, принципов и теорий началась революция, которая сокрушила эти лишь казавшиеся вечными представления. Человеческое познание проникло в необычные слои бытия и столкнулось там с непривычными видами материи и формами ее движения. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние преставления о пространстве и времени, о неделимости атома, о постоянстве массы, о неизменности химических элементов, об однозначной причинности и т.д. Вместе с этим закончился классический этап в развитии естествознания, наступил новый этап неклассического естествознания, характеризующийся квантово-релятивистскими представлениями о физической реальности. Из упомянутых Томсоном двух «туч» на ясном небосводе физической науки и родились те две теории, которые определили суть неклассической физики, - теория относительности и квантовая физика. И они легли в основу современной научной картины мира.

Чем же отличается неклассическая наука от классической?

В классической науке всякое теоретическое построение не только рассматривалось, но и сознательно создавалось как обобщение данных опыта, как подсобное средство описания и истолкования результатов наблюдения и эксперимента, результатов, полученных независимо от теоретического построения. Новые воззрения заменяют прежние лишь потому, что они основываются на большем числе фактов, на уточненном значении ранее грубо измеренных величин, на результатах опыта с прежде неизвестными явлениями или с ранее не выявленными параметрами уже до того изученных процессов. Научное знание, исходящее из того, что вся динамика знания состоит в непрерывном увеличении общей суммы эмпирических обобщений, не знает и не может знать иной модели роста, чем та, которая однозначным образом связано с кумулятивностью. Согласно этому взгляду, развитие науки представляется последовательным ростом однажды познанного, подобно тому, как кирпичик к кирпичику наращивается прямая стена. По существу, такой подход признает лишь рост науки, но отвергает ее подлинное развитие: научная картина мира не изменяется, а только расширяется.

Задача классического естествознания усматривалась в нахождении неизменных законов природы, и его выдающиеся представители полагали, что эти законы ими уже найдены. Таковыми считались принципы классической механики, что отражено в очень выразительном афоризме Лагранжа: «Ньютон – счастливейший из смертных, ибо истину удается открыть лишь раз, и Ньютон открыл эту истину». Развитие физики после Ньютона трактовалось как некое редуцирование того, что было известно и того, что будет известно, к положениям классической механики. В таком учении микромир, макромир и мегамир должны подчиняться одним и тем же законам, представляя собой лишь увеличенные или уменьшенные копии друг друга. При таком подходе трудно принять, например, идею об атомах, размеры и свойства которых никак не могут быть поняты внутри классических построений. Неудивительно, что противник атомистической теории В.Оствальд считал атомную гипотезу подобной лошади, которую надо искать внутри паровоза, чтобы объяснить его движение. Атом в форме классического объекта и на самом деле очень похож на такую лошадь. Понять, что за «лошадь» спрятана внутри паровоза и есть задача неклассической науки – сначала создать модель, а потом вложить в нее принципиально новый смысл.

В неклассической науке сложилась другая установка: ведущим, обладающим эвристической ценностью и прогностической мощью элементом познавательного процесса становится теория, а факты получают свою интерпретацию лишь в контексте определенной теории. Из этого следует историческая изменчивость форм познания мира: для неклассической науки существенно не просто найти теорию, описывающую определенный круг явлений, но крайне важно найти пути перехода от этой теории к более глубокой и общей. Именно этим путем возникли и утвердились теория относительности, квантовая механика, квантовая электродинамика, именно этим путем развивается современная теория элементарных частиц и астрофизика. «Лучший удел физической теории состоит в том, чтобы указывать путь создания новой, более общей теории, в рамках которой она остается предельным случаем».

Особенность неклассической физики выявляется, быть может, наиболее рельефно в подходе к решению вопроса о соотношении субъекта и объекта. В отличие от классической науки, которая считает, что особенности субъекта никак не сказываются на результатах познания, неклассическая наука в своих методологических установках признает присутствие субъекта в процессе познания неизбежным и неустранимым, а потому результаты познания не могут не содержать «примесь субъективности». Всем известно высказывание выдающегося ученого ХХ в. Н.Бора о том, что «в драме бытия мы являемся одновременно и актерами, и зрителями». По мнению другого выдающегося физика В.Гейзенберга, квантовая теория утвердила точку зрения, согласно которой человек описывает и объясняет природу не в его, так сказать, «голой самости», а исключительно преломленную через призму человеческой субъективности. Высоко оценивая формулу К.Вейцзеккера: «Природа была до человека, но человек был до естествознания», он раскрывает ее смысл: «Первая половина высказывания оправдывает классическую физику с ее идеалами полной объективности. Вторая половина объясняет, почему мы не можем освободиться от парадоксов квантовой теории и от необходимости применения классических понятий».

Таким образом, возникнув в Новое время, наука проходит в своем развитии классический, неклассический и постнеклассический этапы, на каждом из которых разрабатываются соответствующие идеалы, нормы и методы исследования, возникает своеобразный понятийный аппарат. Но возникновение нового типа рациональности и нового образа науки не следует понимать упрощенно в том смысле, будто каждый новый этап приводит к полному исчезновению представлений и методологических установок предшествующего этапа. Напротив, между ними существует преемственность. Неклассическая наука вовсе не уничтожила классическую рациональность, а только ограничила сферу его действия. При решении ряда задач неклассические представления о мире и познании оказываются избыточными, и исследователь может ориентироваться на классические образцы (например, при решении ряда задач небесной механики вовсе не требуется привлекать норы квантово-релятивистского описания).

Предполагается, что развитие науки детерминистично в отличие от непредсказуемого хода событий, присущего истории искусств. Оглядываясь назад на причудливую и подчас загадочную историю естествознания, нельзя не усомниться в правильности подобных утверждений. Имеются поистине удивительные примеры фактов, которые не принимались во внимание только потому, что культурный климат не был подготовлен к включению их в самосогласованную схему. Например, адекватная действительности гелиоцентрическая идея (от воззрений поздних пифагорейцев до ее более сильного варианта в учении Аристарха Самосского, жившего в 111 в. до н.э.) не нашла должного отклика и была отвергнута античной наукой, а геоцентрическая космология Аристотеля, получив математическое оформление в работах К.Птолемея, задала эталон научных построений и оказала громадное влияние на научную картину мира поздней античности и средневековья вплоть до ХУ1 в. В чем причины случившегося? Может их следует искать в авторитете Аристотеля? Или в большей научной разработанности геоцентрических воззрений по сравнению с гелиоцентрическими?

Лучшая разработанность геоцентрической системы мира, как и авторитете ее авторов, безусловно, сыграли немаловажную роль в утверждении геоцентрических воззрений. Однако нетрудно заметить, что, ограничившись таким объяснением, мы оставляем не снятым вопрос: почему геоцентрическая система оказалась лучше разработанной и в силу каких причин исследовательские усилия наиболее выдающихся мыслителей оказались направленными на разработку неадекватной действительности системы?

Ответ, по-видимому, следует искать в том, что любая научная теории (равно как и само научное познание, взятое во всем своем многообразии) не является самодовлеющим и самодостаточным результатом деятельности абстрактного гносеологического субъекта. Вплетенность теории в социально-историческую практику общества и через нее в общую культуру эпохи – важнейший момент ее жизнеспособности и развития. Хотя наука – относительно саморазвивающаяся система знаний, тем не менее тенденция развития научного знания в конечном счете детерминирована социальной практикой субъектов познавательной деятельности, общей динамикой их социо-культурных традиций. Поскольку в мировой науке нет абсолютно случайных и совершенно изолированных от всей человеческой культуры теорий, то возникновение или, точнее, выдвижение той или иной научной идеи и ее восприятие научным сообществом - далеко не одно и то же. Для принятия новой теории степень подготовленности исторической эпохи к ее восприятию гораздо важнее, нежели соображения, связанные с талантом ее автора или степенью ее разработанности. Считать вслед за Ф.Дайсоном, что если бы Аристарх Самосский имел больший авторитет, чем Аристотель, то гелиоцентрическая астрономия и физика избавили бы человечество от «1800-летнего мрака невежества» - значит полностью игнорировать реальный исторический контекст. Прав Э. Шредингер, который, к возмущению многих философов науки, писал: «Существует тенденция забывать, что все естественные науки связаны с общечеловеческой культурой и что научные открытия, даже кажущиеся в настоящий момент наиболее передовыми и доступными пониманию немногих избранных все же бессмысленны вне своего культурного контекста. Та теоретическая наука, которая не признает, что ее построения служат в итоге для надежного усвоения образованной прослойкой общества и превращения в органическую часть общей картины мира; теоретическая наука, повторяю, представители которой внушают друг другу идеи на языке, в лучшем случае понятном лишь малой группе близких попутчиков, - такая наука непременно оторвется от остальной человеческой культуры; в перспективе она обречена на бессилие и паралич, сколько бы ни продолжался и как бы упрямо ни поддерживался этот стиль для избранных».

Философия науки показала, что в качестве критерия научности знания должен рассматриваться целый комплекс признаков: доказательность, интерсубъективность, обезличенность, незавершенность, систематичность, критичность, внеморальность, рациональность.

1. Наука доказательна в том смысле, что ее положения не просто декларируются, не просто принимаются на веру, а выводятся, доказываются в соответствующей систематизированной и логически упорядоченной форме. Наука претендует на теоретическую обоснованность как содержания, так и способов достижения знаний, она не может твориться по заказу или указу. Реальные наблюдения, логический анализ, обобщения, выводы, установление причинно-следственной связи на основе рациональных процедур – вот доказательные средства научного знания.

2. Наука интерсубъективна в том смысле, что получаемые ею знания общезначимы, общеобязательны в отличие, например, от мнения, характеризующегося необщезначимостью, индивидуальностью. Признак интерсубъективности научного знания конкретизируется благодаря признаку его воспроизводимости, который указывает на свойство инвариантности знания, получаемого в ходе познания всяким субъектом.

3. Наука обезличенна в том смысле что ни индивидуальные особенности ученого, ни его национальность или место проживания никак не представлены в конечных результатах научного познания. Научный работник отвлекается от любых проявлений, характеризующих отношение человека к миру, он смотрит на мир как на объект исследования и не более того. Научное знание представляет тем большую ценность, чем меньше оно выражает индивидуальность исследователя.

4. Наука незавершенна в том смысле, что научное знание не может достичь абсолютной истины, после которой уже нечего будет исследовать. Абсолютная истина в качестве полного и законченного знания о мире в целом выступает как предел стремлений разума, который никогда не будет достигнут. Диалектическая закономерность познавательного движения по объекту состоит в том, что объект в процессе познания включается во все новые связи и в силу этого выступает во всех новых качествах, из объекта как бы вычерпывается все новое содержание, он как бы поворачивается каждый раз другой своей стороной, в нем выявляются все новые свойства. Задача познания – постигнуть реальное содержание объекта познания, а это означает необходимость отразить все многообразие свойств, связей, опосредований данного объекта, которые по существу бесконечны. В силу этого и процесс научного познания бесконечен.

5. Наука систематична в том смысле, что она имеет определенную структуру, а не является бессвязным набором частей. Собрание разрозненных знаний, не объединенных в связную систему, еще не образует науку. В основе научных знаний лежат определенные исходные положения, закономерности позволяющие объединять соответствующие знания в единую систему. Знания превращаются в научные, когда целенаправленное собирание фактов, их описание и объяснение доводится до уровня их включения в систему понятий, в состав теории.

6. Наука критична в том смысле, что ее фундаментом является свободомыслие и поэтому она всегда готова поставить под сомнение и пересмотреть свои даже самые основополагающие результаты.

7. Наука ценностно нейтральна в том смысле, что научные истины нейтральны в морально-этическом плане, а нравственные оценки могут относиться либо к деятельности по получению знания, либо к деятельности по его применению. «Принципы науки могут быть высказаны только в изъявительном наклонении, в этом же наклонении выражаются и экспериментальные данные. Исследователь может сколько угодно жонглировать с этими принципами, соединять их, нагромождать их друг на друга; все, что он из них получит, будет в изъявительном наклонении. Он никогда не получит предложения, которое говорило: делай это или не делай того, т.е. предложения, которое бы соответствовало или противоречило морали».

Только одновременное наличие всех указанных признаков в известном результате познания в полной мере определяет его научность. Отсутствие хотя бы одного из этих признаков делает невозможным квалифицировать этот результат как научный. Например, интерсубъективным может быть и «всеобщее заблуждение», систематичной может быть и религия, истинность могут включать и преднаука, обыденные знания, мнения.

Сущность и структура естествознания

Возникновение науки и основные этапы её развития.

В обыденном языке слово "наука" употребляется в нескольких смыслах и обозначает:

Систему специальных знаний; - вид специализированной деятельности - общественный институт (совокупность специализированных учреждений, в которых люди либо занимаются наукой, либо готовятся к этим занятиям).

Наука во всех трех смыслах существовала не всегда, а привычное нам экспериментально-математическое естествознание появилось не везде. Различия форм науки, существовавших в локальных культурах, породили в специальной литературе проблему определения понятия науки.

На сегодняшний день существует много таких определений. Одно из них приводится в учебнике "Концепции современного естествознания" под ред. профессоров В. Н. Лавриненко и В. П. Ратникова: "Наука - это специализированная система идеальной, знаково-смысловой и естественно-предметной деятельности людей, направленная на достижение максимально достоверного истинного знания о действительности" . В Новой философской энциклопедии наука определяется проще: "Наука - особый вид познавательной деятельности, нацеленный на выработку объективных, системно организованных и обоснованных знаний о мире"

Наука как особый вид деятельности отличается от других видов деятельности пятью главными характеристиками: 1) систематизацией знаний; 2) доказательностью; 3) использованием специальных методов (исследовательских процедур); 4) кооперацией усилий профессиональных ученых; 5) институционализацией (от лат. institutum - "установление", "учреждение") - в смысле создания специальной системы отношений и учреждений. Эти качества познавательная деятельность человека приобрела не сразу, а значит, наука тоже появилась не в готовом виде. В развитии познания, завершившемся возникновением науки, выделяют три этапа:

Первый этап, как полагает И. Т. Касавин, начинается примерно 1 млн. лет назад, когда предки человека оставили тропический коридор и стали расселяться по Земле. Изменившиеся условия обитания заставили их приспосабливаться к ним, создавая культурные изобретения. Предгоминиды (предчеловекоподобные) начинают использовать огонь, производить орудия труда и развивать язык как средство общения. Знание на этом этапе получалось как побочный результат практической деятельности. Так, при изготовлении, например, каменного топора кроме основного результата - получения топора - имел место и побочный результат в виде знания о видах камня, его свойствах, способах обработки и т.д. На данном этапе знание не осознавалось как нечто особенное и не рассматривалось как ценность.

Второй этап эволюции познавательной деятельности начинается с возникновением Древних цивилизаций 5-6 тысяч лет назад: Египетской (IV тыс. до н. э.), Шумерской, Китайской и Индийской (все - в III тыс. до н. э.), Вавилонской (II тыс. до н. э.). На втором этапе знание начинает осознаваться как ценность. Оно собирается, записывается и передается из поколения в поколение, но познание пока еще не считается особым видом деятельности, оно все еще включено в практическую деятельность, весьма часто - в культовую практику. Монополистами такого знания почти повсеместно выступали жрецы.

На третьем этапе познание выступает в форме специализированной деятельности по получению знания, то есть в форме науки. Начальная форма науки - древняя наука - мало похожа на науку в современном смысле этого слова. В Западной Европе древняя наука появляется у греков в конце VII в. до н. э. вместе с философией, долгое время не отличается от нее и развивается вместе с ней. Так, первым математиком и философом Греции называют купца Фалеса (около 640-562 гг. до н. э.), занимавшегося также политикой, астрономией, метеорологией и изобретательством в области гидроинженерии. Древнюю науку нельзя считать вполне "наукой", потому что из пяти названных нами специфических черт науки у нее были только три (доказательность, систематичность и исследовательские процедуры), да и то в зачаточном состоянии, остальные пока отсутствовали.

Греки были чрезвычайно любознательным народом. Отовсюду, куда забрасывала их судьба, они привозили тексты, содержащие преднаучные сведения. Их сравнение обнаружило несовпадения и поставило вопрос: а что же истинно? К примеру, вычисления математических величин (таких, как число p) жрецами Египта и Вавилона приводили к существенно различающимся результатам. Это было вполне естественным следствием, так как восточная преднаука не содержала системы знаний, формулировок фундаментальных законов и принципов. Она представляла собой конгломерат разрозненных положений и решений специальных задач, без каких-либо рациональных обоснований выбранного способа решения. К примеру, в египетских папирусах и клинописных таблицах из Шумера, содержащих вычислительные задачи, они излагались в форме предписаний и лишь иногда сопровождались проверкой, которую можно считать своеобразным обоснованием. Греки выдвинули новые критерии организации и получения знания - системность, доказательность, использование надежных познавательных методов, - которые оказались чрезвычайно продуктивными. Вычислительные вопросы стали в греческой науке второстепенными.

Первоначально в Древней Греции не было деления на различные "науки": разнохарактерное знание существовало в едином комплексе и называлось "мудрость", затем примерно в VI - V вв. до н. э. оно стало называться "философия". Позже от философии начинают обособляться различные науки. Они отделялись не одновременно, процесс специализации знания и обретения науками статуса самостоятельных дисциплин растянулся на многие века. Первыми оформились в самостоятельные науки медицина и математика.

Основателем европейской медицины считают древнегреческого врача Гиппократа (460-370 гг. до н. э.), систематизировавшего знания, накопленные не только древнегреческими, но также египетскими медиками, и создавшего медицинскую теорию. Теоретическая математика оформляется Евклидом (330-277 гг. до н. э.) в сочинении "Начала", которое и сегодня используется в школьном курсе геометрии. Затем в 1-й половине III в. до н. э. была систематизирована география античным ученым Эратосфеном (около 276-194 гг. до н. э.). Большую роль в процессе эволюции науки сыграла разработка Аристотелем (384-322 гг. до н. э.) логики, провозглашенной инструментом научного познания в любой области. Аристотель дал первое определение науки и научного метода, различил все науки по их предметам.

Тесная связь античной науки с философией определила одну из ее особенностей - умозрительность, недооценку практической полезности научных знаний. Теоретическое знание считалось ценным само по себе, а не за ту пользу, которую из него можно извлечь. По этой причине самой ценной считалась философия, о которой Аристотель сказал так: "Другие науки, может быть, более необходимы, но лучше нет ни одной".

Самоценность науки была настолько очевидна для древних греков, что, по свидетельству современников, математик Евклид спросившему его: "Кому нужна эта геометрия?" вместо ответа протянул несчастному обол со скорбным лицом, дескать бедняге ужа ничем не помочь.

В поздней античности (II - V вв.) и Средние века (III - XV вв.) западная наука вместе с философией оказалась "служанкой богословия". Это существенным образом сузило круг научных проблем, которые могли быть рассмотрены и рассматривались учеными-богословами. С появлением в I в. христианства и последующим поражением в борьбе с ним античной науки <> у теоретиков-богословов возникла задачи обоснования христианского учения и передачи навыков его обоснования. Решением этих задач занялась тогдашняя "наука" - схоластика (по-латыни, "школьная философия").

Схоластов не интересовали изучение природы и математика, зато очень интересовала логика, которую они использовали в диспутах о Боге.

В период позднего средневековья, получившего название эпохи Возрождения (XIV - XVI вв.), у практиков - художников, архитекторов ("титанов Возрождения" вроде Леонардо да Винчи) - снова пробуждается интерес к природе и появляется идея необходимости опытного изучения природы. Естествознание развивается тогда в рамках натурфилософии - буквально, философии природы, которая включает в себя не только рационально обоснованное знание, но и псевдознания оккультных наук, таких как магия, алхимия, астрология, хиромантия и т.д. Это своеобразное сочетание рационального знания и псевдознания было связано с тем, что религия все еще занимала важное место в представлениях о мире, все мыслители Возрождения считали природу делом божественных рук и преисполненной сверхъестественных сил. Такое мировоззрение называется магико-алхимическим, а не научным.

Наука в современном смысле слова появляется в Новое время (XVII - XVIII вв.) и сразу же начинает очень динамично развиваться. Сначала в XVII в. закладываются основы современного естествознания: разрабатываются опытно-математические методы наук о природе (усилиями Ф. Бэкона, Р. Декарта, Дж. Локка) и классическая механика, лежащая в основе классической физики (усилиями Г. Галилея, И. Ньютона, Р. Декарта, Х. Гюйгенса), опирающаяся на классическую математику (в частности, на геометрию Евклида). В этот период научное знание становится в полном смысле слова доказательным, систематизированным, опирающимся на специальные исследовательские процедуры. Тогда же появляется, наконец, научное сообщество, состоящее из профессиональных ученых, которое начинает обсуждать научные проблемы, появляются специальные учреждения (Академии наук), способствующие ускорению обмена научными идеями. Поэтому именно с XVII в. говорят о появлении науки как социального института.

Развитие западноевропейской науки шло не только за счет накопления знаний о мире и о себе самой. Периодически происходили смены всей системы наличного знания - научные революции, когда наука сильно менялась. Поэтому в истории западноевропейской науки выделяют 3 периода и связанные с ними типы рациональности: 1) период классической науки (XVII - начало ХХ в.); 2) период неклассической науки (1-я половина ХХ века); 3) период постнеклассической науки (2-я половина ХХ века). В каждый из периодов расширяется поле исследуемых объектов (от простых механических к сложным, саморегулирующимся и саморазвивающимся объектам) и меняются основания научной деятельности, подходы ученых к исследованию мира - как говорят, "типы рациональности". (см. Приложение №1)

Классическая наука появляется в результате научной революции XVII века. Она все еще связана пуповиной с философией, потому что математика и физика продолжают считаться разделами философии, а философия - наукой. Философская картина мира строится естествоиспытателями как научная механистическая картина мира. Такое научно-философское учение о мире называется "метафизическим". Оно получается на основе классического типа рациональности, который складывается в классической науке. Ему характерны детерминизм (представление о причинно-следственной взаимосвязи и взаимообусловленности явлений и процессов реальности), понимание целого как механической суммы частей, когда свойства целого определяются свойствами частей, а каждая часть изучается одной наукой, и вера в существование объективной и абсолютной истины, которая считается отражением, копией природного мира. Основоположники классической науки (Г. Галилей, И. Кеплер, И. Ньютон, Р. Декарт, Ф. Бэкон и др.) признавали существование Бога-творца. Они полагали, что он творит мир в соответствие с идеями своего разума, которые воплощаются в объектах и явлениях. Задача ученого - открыть божественный замысел и выразить его в виде научных истин. Их представление о мире и познании и стало причиной появления выражения "научное открытие" и понимания сущности истины: коль скоро ученый открывает то, что существует помимо него и лежит в основе всех вещей, научная истина объективна и отражает реальность. Однако по мере увеличения знаний о природе классическое естествознание все больше приходило в столкновение с идеей неизменных законов природы и абсолютности истины.

Тогда на рубеже ХIХ-ХХ вв. происходит новая революция в науке, в результате которой разрушились существовавшие метафизические представления о строении, свойствах, закономерностях материи (взгляды на атомы как неизменные, неделимые частицы, на механическую массу, на пространство и время, на движение и его формы и т.д.) и появился новый тип науки - неклассические науки. Для неклассического типа рациональности характерен учет того, что объект познания, а, следовательно, и знание о нем, зависят от субъекта, от используемых им средств и процедур.

Бурное развитие науки в ХХ веке снова изменяет лицо науки, поэтому говорят, что наука во второй половине ХХ столетия становится другой, постнеклассической. Для постнеклассической науки и постнеклассического типа рациональности характерны: появление междисциплинарных и системных исследований, эволюционизм, использование статистических (вероятностных) методов, гуманитаризация и экологизация знания. Об этих особенностях современной науки следует сказать подробнее.

Появление междисциплинарных и системных исследований тесно связаны. В классической науке мир представлялся состоящим из частей, его функционирование определялось закономерностями составляющих частей, причем каждая часть изучалась определенной наукой. В ХХ веке у ученых появляется понимание того, что мир нельзя рассматривать как "состоящий из частей", но нужно рассматривать как состоящий из различных целостностей, обладающих определенной структурой - то есть из систем различного уровня. В нем все взаимосвязано, часть выделить нельзя, потому что часть не живет вне целого. Есть проблемы, решение которых невозможно в рамках старых дисциплин, но только на стыке нескольких дисциплин. Осознание новых задач потребовало новых методов исследования, нового понятийного аппарата. Привлечение знания из разных наук для решения подобных задач привело к возникновению междисциплинарных исследований, составлению комплексных программ исследований, чего в рамках классической науки не было, и внедрение системного подхода.

Примером новой синтетической науки является экология: она строится на основании знаний, почерпнутых из многих фундаментальных дисциплин - физики, химии, биологии, геологии, географии, а также гидрографии, социологии и др. Она рассматривает окружающую среду как единую систему, включающую ряд подсистем, таких как живое вещество, биогенное вещество, биокосное вещество и косное вещество. Все они связаны между собой, и вне целого исследоваться не могут. В каждой из этих подсистем выделяются свои подсистемы, существующие во взаимосвязях с другими, например, в биосфере - сообщества растений, животных, человек как часть биосферы и т. д.

В классической науке системы также выделялись и исследовались (например, Солнечная система), но иначе. Спецификой современного системного подхода является акцент на системах другого, нежели в классической науке, рода. Если ранее главное внимание в научном исследовании обращалось на устойчивость, и речь шла о закрытых системах (в которых действуют законы сохранения), то сегодня ученых интересуют в первую очередь открытые системы, характеризующиеся нестабильностью, изменчивостью, развитием, самоорганизацией (их изучает синергетика).

Возрастание в современной науке роли эволюционного подхода вязано с распространением возникнувшей в XIX веке идеи эволюционного развития живой природы в XX веке и на неживую природу. Если в XIX веке идеи эволюционизма были характерны для биологии и геологии, то в XX веке эволюционные концепции стали складываться в астрономии, астрофизике, химии, физике и других науках. В современной научной картине мира Вселенная рассматривается как единая эволюционирующая система, начиная с момента ее образования (Большого Взрыва) и кончая социокультурным развитием.

Все больше используются статистические методы. Статистические методы представляют собой методы описания и изучения массовых явлений и процессов, допускающих численное выражение. Они не дают одной истины, но дают различные проценты вероятности. Гуманитаризация и экологизация постнеклассической науки подразумевают выдвижение новых целей для всех научных исследований: если раньше целью науки была научная истина, то сейчас на первый план выдвигаются служение целям совершенствования человеческой жизни, установление гармонии между природой и обществом. Гуманитаризация знания демонстрируется, в частности, принятием в космологии (учении о космосе) принципа антропности (от греч. "антропос" - "человек"), суть которого в том, что свойства нашей Вселенной обусловливаются наличием в ней человека, наблюдателя. Если ранее считалось, что человек не может влиять на законы природы, принцип антропности признает зависимость Вселенной и ее законов от человека.

Биосфера. Этапы эволюции биосферы

Если рассматривать уровни содержания кислорода в атмосфере как границы этапов развития биосферы, то с этой точки зрения биосфера прошла три этапа: 1. Восстановительный; 2. Слабоокислительный; 3. Окислительный...

Первой в истории человечества формой существования естествознания была так называемая натурфилософия (от лат. natura -- природа), или философия природы. Последняя характеризовалась чисто умозрительным истолкованием природного мира...

Методы генетических исследований человека

Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины...

Основные понятия современного естествознания

Химия - наука, изучающая вещества и их превращения. Превращения веществ происходят в результате химических реакций. Первые сведения о химических превращениях люди получили, занимаясь различными ремеслами, когда красили ткани...

Основные этапы индивидуального развития человека

Развитие организма человека. Индивидуальное развитие человека (онтогенез) начинается с момента оплодотворения, когда происходит слияние женской (яйцеклетка) и мужской (сперматозоид) половых клеток...

Основные этапы роста и развития организма

Возрастная антропология изучает закономерности становления и развития анатомических структур и физиологических функций на протяжении онтогенеза - от оплодотворения яйцеклетки до конца жизни...

Основы генетики

До конца XIX в...

Классическая наука появляется в результате научной революции XVII века. Она все еще связана пуповиной с философией, потому что математика и физика продолжают считаться разделами философии, а философия - наукой...

Сравнительный анализ классической и неклассической стратегий естественнонаучного мышления

На рубеже ХIХ-ХХ вв. происходит новая революция в науке, в результате которой разрушились существовавшие метафизические представления о строении, свойствах, закономерностях материи (взгляды на атомы как неизменные, неделимые частицы...

Теория систем

наука теория становление закономерность Поиск подходов к раскрытию сложности изучаемых явлений начался еще в глубоком прошлом и связан с другими принципиальными методологическими концепциями: концепцией элементаризма и концепцией...

Что такое естествознание и его отличие от других циклов науки

Основные этапы развития естествознания могут быть выделены, исходя из различных соображений. По моему мнению, в качестве основного критерия следует рассматривать доминирующий среди естествоиспытателей подход к построению их теорий...

Этапы развития естествознания и общества

На всех этапах развития человеческого познания наблюдается сложная взаимосвязь результатов исследований общества и естественных наук. Первичное знание о мире, накопленное в течение многих столетий первобытно-родового общества...

В обыденном языке слово "наука" употребляется в нескольких смыслах и обозначает:

Систему специальных знаний; - вид специализированной деятельности - общественный институт (совокупность специализированных учреждений, в которых люди либо занимаются наукой, либо готовятся к этим занятиям).

Наука во всех трех смыслах существовала не всегда, а привычное нам экспериментально-математическое естествознание появилось не везде. Различия форм науки, существовавших в локальных культурах, породили в специальной литературе проблему определения понятия науки.

На сегодняшний день существует много таких определений. Одно из них приводится в учебнике "Концепции современного естествознания" под ред. профессоров В. Н. Лавриненко и В. П. Ратникова: "Наука - это специализированная система идеальной, знаково-смысловой и естественно-предметной деятельности людей, направленная на достижение максимально достоверного истинного знания о действительности" . В Новой философской энциклопедии наука определяется проще: "Наука - особый вид познавательной деятельности, нацеленный на выработку объективных, системно организованных и обоснованных знаний о мире"

Наука как особый вид деятельности отличается от других видов деятельности пятью главными характеристиками: 1) систематизацией знаний; 2) доказательностью; 3) использованием специальных методов (исследовательских процедур); 4) кооперацией усилий профессиональных ученых; 5) институционализацией (от лат. institutum - "установление", "учреждение") - в смысле создания специальной системы отношений и учреждений. Эти качества познавательная деятельность человека приобрела не сразу, а значит, наука тоже появилась не в готовом виде. В развитии познания, завершившемся возникновением науки, выделяют три этапа:

Первый этап, как полагает И. Т. Касавин, начинается примерно 1 млн. лет назад, когда предки человека оставили тропический коридор и стали расселяться по Земле. Изменившиеся условия обитания заставили их приспосабливаться к ним, создавая культурные изобретения. Предгоминиды (предчеловекоподобные) начинают использовать огонь, производить орудия труда и развивать язык как средство общения. Знание на этом этапе получалось как побочный результат практической деятельности. Так, при изготовлении, например, каменного топора кроме основного результата - получения топора - имел место и побочный результат в виде знания о видах камня, его свойствах, способах обработки и т.д. На данном этапе знание не осознавалось как нечто особенное и не рассматривалось как ценность.

Второй этап эволюции познавательной деятельности начинается с возникновением Древних цивилизаций 5-6 тысяч лет назад: Египетской (IV тыс. до н. э.), Шумерской, Китайской и Индийской (все - в III тыс. до н. э.), Вавилонской (II тыс. до н. э.). На втором этапе знание начинает осознаваться как ценность. Оно собирается, записывается и передается из поколения в поколение, но познание пока еще не считается особым видом деятельности, оно все еще включено в практическую деятельность, весьма часто - в культовую практику. Монополистами такого знания почти повсеместно выступали жрецы.

На третьем этапе познание выступает в форме специализированной деятельности по получению знания, то есть в форме науки. Начальная форма науки - древняя наука - мало похожа на науку в современном смысле этого слова. В Западной Европе древняя наука появляется у греков в конце VII в. до н. э. вместе с философией, долгое время не отличается от нее и развивается вместе с ней. Так, первым математиком и философом Греции называют купца Фалеса (около 640-562 гг. до н. э.), занимавшегося также политикой, астрономией, метеорологией и изобретательством в области гидроинженерии. Древнюю науку нельзя считать вполне "наукой", потому что из пяти названных нами специфических черт науки у нее были только три (доказательность, систематичность и исследовательские процедуры), да и то в зачаточном состоянии, остальные пока отсутствовали.

Греки были чрезвычайно любознательным народом. Отовсюду, куда забрасывала их судьба, они привозили тексты, содержащие преднаучные сведения. Их сравнение обнаружило несовпадения и поставило вопрос: а что же истинно? К примеру, вычисления математических величин (таких, как число p) жрецами Египта и Вавилона приводили к существенно различающимся результатам. Это было вполне естественным следствием, так как восточная преднаука не содержала системы знаний, формулировок фундаментальных законов и принципов. Она представляла собой конгломерат разрозненных положений и решений специальных задач, без каких-либо рациональных обоснований выбранного способа решения. К примеру, в египетских папирусах и клинописных таблицах из Шумера, содержащих вычислительные задачи, они излагались в форме предписаний и лишь иногда сопровождались проверкой, которую можно считать своеобразным обоснованием. Греки выдвинули новые критерии организации и получения знания - системность, доказательность, использование надежных познавательных методов, - которые оказались чрезвычайно продуктивными. Вычислительные вопросы стали в греческой науке второстепенными.

Первоначально в Древней Греции не было деления на различные "науки": разнохарактерное знание существовало в едином комплексе и называлось "мудрость", затем примерно в VI - V вв. до н. э. оно стало называться "философия". Позже от философии начинают обособляться различные науки. Они отделялись не одновременно, процесс специализации знания и обретения науками статуса самостоятельных дисциплин растянулся на многие века. Первыми оформились в самостоятельные науки медицина и математика.

Основателем европейской медицины считают древнегреческого врача Гиппократа (460-370 гг. до н. э.), систематизировавшего знания, накопленные не только древнегреческими, но также египетскими медиками, и создавшего медицинскую теорию. Теоретическая математика оформляется Евклидом (330-277 гг. до н. э.) в сочинении "Начала", которое и сегодня используется в школьном курсе геометрии. Затем в 1-й половине III в. до н. э. была систематизирована география античным ученым Эратосфеном (около 276-194 гг. до н. э.). Большую роль в процессе эволюции науки сыграла разработка Аристотелем (384-322 гг. до н. э.) логики, провозглашенной инструментом научного познания в любой области. Аристотель дал первое определение науки и научного метода, различил все науки по их предметам.

Тесная связь античной науки с философией определила одну из ее особенностей - умозрительность, недооценку практической полезности научных знаний. Теоретическое знание считалось ценным само по себе, а не за ту пользу, которую из него можно извлечь. По этой причине самой ценной считалась философия, о которой Аристотель сказал так: "Другие науки, может быть, более необходимы, но лучше нет ни одной".

Самоценность науки была настолько очевидна для древних греков, что, по свидетельству современников, математик Евклид спросившему его: "Кому нужна эта геометрия?" вместо ответа протянул несчастному обол со скорбным лицом, дескать бедняге ужа ничем не помочь.

В поздней античности (II - V вв.) и Средние века (III - XV вв.) западная наука вместе с философией оказалась "служанкой богословия". Это существенным образом сузило круг научных проблем, которые могли быть рассмотрены и рассматривались учеными-богословами. С появлением в I в. христианства и последующим поражением в борьбе с ним античной науки <> у теоретиков-богословов возникла задачи обоснования христианского учения и передачи навыков его обоснования. Решением этих задач занялась тогдашняя "наука" - схоластика (по-латыни, "школьная философия").

Схоластов не интересовали изучение природы и математика, зато очень интересовала логика, которую они использовали в диспутах о Боге.

В период позднего средневековья, получившего название эпохи Возрождения (XIV - XVI вв.), у практиков - художников, архитекторов ("титанов Возрождения" вроде Леонардо да Винчи) - снова пробуждается интерес к природе и появляется идея необходимости опытного изучения природы. Естествознание развивается тогда в рамках натурфилософии - буквально, философии природы, которая включает в себя не только рационально обоснованное знание, но и псевдознания оккультных наук, таких как магия, алхимия, астрология, хиромантия и т.д. Это своеобразное сочетание рационального знания и псевдознания было связано с тем, что религия все еще занимала важное место в представлениях о мире, все мыслители Возрождения считали природу делом божественных рук и преисполненной сверхъестественных сил. Такое мировоззрение называется магико-алхимическим, а не научным.

Наука в современном смысле слова появляется в Новое время (XVII - XVIII вв.) и сразу же начинает очень динамично развиваться. Сначала в XVII в. закладываются основы современного естествознания: разрабатываются опытно-математические методы наук о природе (усилиями Ф. Бэкона, Р. Декарта, Дж. Локка) и классическая механика, лежащая в основе классической физики (усилиями Г. Галилея, И. Ньютона, Р. Декарта, Х. Гюйгенса), опирающаяся на классическую математику (в частности, на геометрию Евклида). В этот период научное знание становится в полном смысле слова доказательным, систематизированным, опирающимся на специальные исследовательские процедуры. Тогда же появляется, наконец, научное сообщество, состоящее из профессиональных ученых, которое начинает обсуждать научные проблемы, появляются специальные учреждения (Академии наук), способствующие ускорению обмена научными идеями. Поэтому именно с XVII в. говорят о появлении науки как социального института.

Развитие западноевропейской науки шло не только за счет накопления знаний о мире и о себе самой. Периодически происходили смены всей системы наличного знания - научные революции, когда наука сильно менялась. Поэтому в истории западноевропейской науки выделяют 3 периода и связанные с ними типы рациональности: 1) период классической науки (XVII - начало ХХ в.); 2) период неклассической науки (1-я половина ХХ века); 3) период постнеклассической науки (2-я половина ХХ века). В каждый из периодов расширяется поле исследуемых объектов (от простых механических к сложным, саморегулирующимся и саморазвивающимся объектам) и меняются основания научной деятельности, подходы ученых к исследованию мира - как говорят, "типы рациональности". (см. Приложение №1)

Классическая наука появляется в результате научной революции XVII века. Она все еще связана пуповиной с философией, потому что математика и физика продолжают считаться разделами философии, а философия - наукой. Философская картина мира строится естествоиспытателями как научная механистическая картина мира. Такое научно-философское учение о мире называется "метафизическим". Оно получается на основе классического типа рациональности , который складывается в классической науке. Ему характерны детерминизм (представление о причинно-следственной взаимосвязи и взаимообусловленности явлений и процессов реальности), понимание целого как механической суммы частей , когда свойства целого определяются свойствами частей, а каждая часть изучается одной наукой, и вера в существование объективной и абсолютной истины, которая считается отражением, копией природного мира . Основоположники классической науки (Г. Галилей, И. Кеплер, И. Ньютон, Р. Декарт, Ф. Бэкон и др.) признавали существование Бога-творца. Они полагали, что он творит мир в соответствие с идеями своего разума, которые воплощаются в объектах и явлениях. Задача ученого - открыть божественный замысел и выразить его в виде научных истин. Их представление о мире и познании и стало причиной появления выражения "научное открытие" и понимания сущности истины: коль скоро ученый открывает то, что существует помимо него и лежит в основе всех вещей, научная истина объективна и отражает реальность. Однако по мере увеличения знаний о природе классическое естествознание все больше приходило в столкновение с идеей неизменных законов природы и абсолютности истины.

Тогда на рубеже ХIХ-ХХ вв. происходит новая революция в науке, в результате которой разрушились существовавшие метафизические представления о строении, свойствах, закономерностях материи (взгляды на атомы как неизменные, неделимые частицы, на механическую массу, на пространство и время, на движение и его формы и т.д.) и появился новый тип науки - неклассические науки. Для неклассического типа рациональности характерен учет того, что объект познания , а, следовательно, и знание о нем, зависят от субъекта, от используемых им средств и процедур.

Бурное развитие науки в ХХ веке снова изменяет лицо науки, поэтому говорят, что наука во второй половине ХХ столетия становится другой, постнеклассической. Для постнеклассической науки и постнеклассического типа рациональности характерны: появление междисциплинарных и системных исследований, эволюционизм, использование статистических (вероятностных) методов, гуманитаризация и экологизация знания. Об этих особенностях современной науки следует сказать подробнее.

Появление междисциплинарных и системных исследований тесно связаны. В классической науке мир представлялся состоящим из частей, его функционирование определялось закономерностями составляющих частей, причем каждая часть изучалась определенной наукой. В ХХ веке у ученых появляется понимание того, что мир нельзя рассматривать как "состоящий из частей", но нужно рассматривать как состоящий из различных целостностей, обладающих определенной структурой - то есть из систем различного уровня. В нем все взаимосвязано, часть выделить нельзя, потому что часть не живет вне целого. Есть проблемы, решение которых невозможно в рамках старых дисциплин, но только на стыке нескольких дисциплин. Осознание новых задач потребовало новых методов исследования, нового понятийного аппарата. Привлечение знания из разных наук для решения подобных задач привело к возникновению междисциплинарных исследований, составлению комплексных программ исследований, чего в рамках классической науки не было, и внедрение системного подхода.

Примером новой синтетической науки является экология: она строится на основании знаний, почерпнутых из многих фундаментальных дисциплин - физики, химии, биологии, геологии, географии, а также гидрографии, социологии и др. Она рассматривает окружающую среду как единую систему, включающую ряд подсистем, таких как живое вещество, биогенное вещество, биокосное вещество и косное вещество. Все они связаны между собой, и вне целого исследоваться не могут. В каждой из этих подсистем выделяются свои подсистемы, существующие во взаимосвязях с другими, например, в биосфере - сообщества растений, животных, человек как часть биосферы и т. д.

В классической науке системы также выделялись и исследовались (например, Солнечная система), но иначе. Спецификой современного системного подхода является акцент на системах другого, нежели в классической науке, рода. Если ранее главное внимание в научном исследовании обращалось на устойчивость, и речь шла о закрытых системах (в которых действуют законы сохранения), то сегодня ученых интересуют в первую очередь открытые системы, характеризующиеся нестабильностью, изменчивостью, развитием, самоорганизацией (их изучает синергетика).

Возрастание в современной науке роли эволюционного подхода вязано с распространением возникнувшей в XIX веке идеи эволюционного развития живой природы в XX веке и на неживую природу. Если в XIX веке идеи эволюционизма были характерны для биологии и геологии, то в XX веке эволюционные концепции стали складываться в астрономии, астрофизике, химии, физике и других науках. В современной научной картине мира Вселенная рассматривается как единая эволюционирующая система, начиная с момента ее образования (Большого Взрыва) и кончая социокультурным развитием.

Все больше используются статистические методы. Статистические методы представляют собой методы описания и изучения массовых явлений и процессов, допускающих численное выражение. Они не дают одной истины, но дают различные проценты вероятности. Гуманитаризация и экологизация постнеклассической науки подразумевают выдвижение новых целей для всех научных исследований: если раньше целью науки была научная истина, то сейчас на первый план выдвигаются служение целям совершенствования человеческой жизни, установление гармонии между природой и обществом. Гуманитаризация знания демонстрируется, в частности, принятием в космологии (учении о космосе) принципа антропности (от греч. "антропос" - "человек"), суть которого в том, что свойства нашей Вселенной обусловливаются наличием в ней человека, наблюдателя. Если ранее считалось, что человек не может влиять на законы природы, принцип антропности признает зависимость Вселенной и ее законов от человека.

  1. История науки.
    1. Философия науки.
    2. Основные этапы развития науки.

3. Заключение.

4. Список использованных источников.

  1. История науки.

История науки - это исследование феномена науки в его истории. Наука, в частности, представляет собой совокупность эмпирических, теоретических и практических знаний о Мире, полученных научным сообществом. Поскольку с одной стороны наука представляет объективное знание, а с другой - процесс его получения и использования людьми, добросовестная историография науки должна принимать во внимание не только историю мысли, но и историю развития общества в целом.

Изучение истории современной науки опирается на множество сохранившихся оригинальных или переизданных текстов. Однако сами слова «наука» и «ученый» вошли в употребление лишь в XVIII-XX веках, а до этого естествоиспытатели называли свое занятие «натуральной философией».

Хотя эмпирические исследования известны еще с античных времен (например, работы Аристотеля и Теофраста), а научный метод был в своих основах разработан в Средние века (например, у Ибнал-Хайсама, Аль-Бируни или Роджера Бэкона), начало современной науки восходит к Новому времени, периоду, называемому научной революцией, произошедшей в XVI-XVII веках в Западной Европе.

Научный метод считается столь существенным для современной науки, что многие ученые и философы считают работы, сделанные до научной революции, «преднаучными». Поэтому историки науки нередко дают науке более широкое определение, чем принято в наше время, чтобы включать в свои исследования период Античности и Средневековья.

Первой и главной причиной возникновения науки является формирование субъектно-объектных отношений между человеком и природой, между человеком и окружающей его средой. Это связано, в первую очередь, с переходом человечества от собирательства к производящему хозяйству. Так, уже в эпоху Палеолита человек создаёт первые орудия труда из камня и кости - топор, нож, скребло, копьё, лук, стрелы, овладевает огнём и строит примитивные жилища. В эпоху Мезолита человек плетёт сеть, делает лодку, занимается обработкой дерева, изобретает лучковое сверло. В период Неолита (до 3000 г. до н. э.) человек развивает гончарное ремесло, осваивает земледелие, занимается изготовлением глиняной посуды, использует мотыгу, серп, веретено, глиняные, бревенчатые, свайные постройки, овладевает металлами. Использует животных в качестве тягловой силы, изобретает колёсные повозки, гончарное колесо, парусник, меха. К началу первого тысячелетия до нашей эры появляются орудия труда из железа.

Второй причиной формирования науки является усложнение познавательной деятельности человека. «Познавательная», поисковая активность характерна и для животных, но в силу усложнения предметно-практической деятельности человека, освоения человеком различных видов преобразующей деятельности, происходят глубокие изменения в структуре психики человека, строении его мозга, наблюдаются изменения в морфологии его тела.

Развитие науки было составной частью общего процесса интеллектуального развития человеческого разума и становления человеческой цивилизации. Нельзя рассматривать развитие науки в отрыве от следующих процессов:

Формирование речи;

Развитие счёта;

Возникновение искусства;

Формирование письменности;

Формирование мировоззрения (миф);

Возникновение философии.

Периодизация науки.

К одной из первоочередных проблем истории науки относят проблему периодизации. Обычно выделяют следующие периоды развития науки:

Преднаука - зарождение науки в цивилизациях Древнего Востока: астрологии, доевклидова геометрия, грамоты, нумерологии.

Античная наука - формирование первых научных теорий (атомизм) и составление первых научных трактатов в эпоху Античности: астрономия Птолемея, ботаника Теофраста, геометрия Евклида, физика Аристотеля, а также появление первых протонаучных сообществ в лице Академии

Средневековая магическая наука - формирование экспериментальной науки на примере алхимии Джабира

Научная революция и классическая наука - формирование науки в современном смысле в трудах Галилея, Ньютона, Линнея

Неклассическая наука - наука эпохи кризиса классической рациональности: теория эволюции Дарвина, теория относительности Эйнштейна, принцип неопределенности Гейзенберга, гипотеза Большого Взрыва, теория катастроф Рене Тома, фрактальная геометрия Мандельброта.

Возможно другое деление на периоды:

доклассический (ранняя античность, поиск абсолютной истины, наблюдение и размышление, метод аналогий)

классический (XVI-XVII вв., появляется планирование экспериментов, введён принцип детерминизма, повышается значимость науки)

неклассический (конец XIX в, появление мощных научных теорий, например, теории относительности, поиск относительной истины, становится ясно, что принцип детерминизма не всегда применим, а экспериментатор оказывает влияние на поиск эксперимента)

постнеклассический (конец XX в., появляется синергетика, расширяется предметное поле познания, наука выходит за свои рамки и проникает в другие области, поиск целей науки).

Предыстория современной науки:

Накопление знаний происходит с появлением цивилизаций и письменности; известны достижения древних цивилизаций (египетской, месопотамской и т. д.) в области астрономии, математики, медицины и др. Однако в условиях господства мифологического, дорационального сознания эти успехи не выходили за чисто эмпирические и практические рамки. Так, например, Египет славился своими геометрами; но если взять египетский учебник геометрии, то там можно увидеть лишь набор практических рекомендаций для землемера, изложенных догматически («если хочешь получить то-то, делай так-то и так-то»); понятие же теоремы, аксиомы и особенно доказательства было этой системе абсолютно чуждо. Действительно, требование «доказательств» показалось бы почти кощунством в условиях, предполагавших авторитарную передачу знания от учителя к ученику.

Можно считать, что истинный фундамент классической науки был заложен в Древней Греции, начиная примерно с VI в. до н. э., когда на смену мифологическому мышлению впервые пришло мышление рационалистическое. Эмпирия, во многом заимствованная греками у египтян и вавилонян, дополняется научной методологией: устанавливаются правила логичных рассуждений, вводится понятие гипотезы и т. д., появляется целый ряд гениальных прозрений, как например теория атомизма. Особенно важную роль в разработке и систематизации, как методов, так и самих знаний сыграл Аристотель. Отличие античной науки от современной состояло в её умозрительном характере: понятие эксперимента было ей чуждо, учёные не стремились соединять науку с практикой (за редкими исключениями, например, Архимеда), а наоборот гордились причастностью к чистому, «бескорыстному» умозрению. Отчасти, это объясняется тем, что греческая философия предполагала,[источник не указан 582 дня] что история циклично повторяется, и развитие науки бессмысленно, так как оно неизбежно закончится кризисом этой науки.

Распространившееся в Европе христианство упразднило взгляд на историю, как на повторяющиеся периоды (Христос, как историческая личность, явился на земле только единственный раз) и создало высокоразвитую богословскую науку (родившуюся в ожесточённых богословских спорах с еретиками в эпоху Вселенских Соборов), построенную на правилах логики. Однако, после разделения церквей в 1054 году, в западной (католической) части обострился кризис богословия. Тогда интерес к эмпирике (опыту) был совершенно отброшен, а наука стала сводиться к толкованию авторитетных текстов и развитию формально-логических методов в лице схоластики. Однако труды античных учёных, получивших статус «авторитетов» - Евклида в геометрии, Птолемея в астрономии, его же и Плиния Старшего в географии и естественных науках, Доната в грамматике, Гиппократа и Галена в медицине и, наконец, Аристотеля, как универсального авторитета в большинстве областей знаний - донесли основы античной науки до Нового Времени, послужив реальным фундаментом, на котором было заложено всё здание современной науки.

В эпоху Возрождения происходит поворот к эмпирическому и свободному от догматизма рационалистическому исследованию, во многом сравнимый с переворотом VI в. до н. э. Этому способствовало изобретение книгопечатания (середина 15-го века), резко расширившего базу для будущей науки. Прежде всего, происходит становление гуманитарных наук, или studia humana (как называли их в противоположность богословию - studia divina); в середине XV в. Лоренцо Валла издаёт трактат «О подложности Константинова дара», заложив тем самым основы научной критики текстов, сто лет спустя Скалигер закладывает основы научной хронологии.

Параллельно идёт стремительное накопление новых эмпирических знаний (особенно с открытием Америки и началом эпохи Великих географических открытий), подрывающее картину мира, завещанную классической традицией. Жестокий удар по ней наносит и теория Коперника. Возрождается интерес к биологии и химии.

Зарождение современной науки

Анатомические исследования Везалия возродили интерес к строению тела человека.

Современное экспериментальное естествознание зарождается только в конце XVI века. Его появление было подготовлено протестантской Реформацией и католической Контрреформацией, когда под вопрос были поставлены самые основы средневекового мировоззрения. Так же как Лютер и Кальвин преобразовали религиозные доктрины, работы Коперника и Галилея привели к отказу от астрономии Птолемея, а труды Везалия и его последователей внесли существенные поправки в медицину. Эти события положили начало процессу, ныне называемому научной революцией.

Ньютон, Исаак

Теоретическое обоснование новой научной методики принадлежит Фрэнсису Бэкону, обосновавшему в своём «Новом органоне» переход от традиционного дедуктивного подхода (от общего - умозрительного предположения или авторитетного суждения - к частному, то есть к факту) к подходу индуктивному (от частного - эмпирического факта - к общему, то есть к закономерности). Появление систем Декарта и особенно Ньютона - последняя была целиком построена на экспериментальном знании - знаменовали окончательный разрыв «пуповины», которая связывала нарождающуюся науку Нового времени с антично-средневековой традицией. Опубликование в 1687 г. «Математических начал натуральной философии» стало кульминацией научной революции и породило в Западной Европе беспрецедентный всплеск интереса к научным публикациям. Среди других деятелей науки этого периода выдающийся вклад в научную революцию внесли также Браге, Кеплер, Галлей, Браун, Гоббс, Гарвей, Бойль, Гук, Гюйгенс, Лейбниц, Паскаль.

    1. Философия науки.

Философия науки - раздел философии, изучающий понятие, границы и методологию науки. Также существуют более специальные разделы философии науки, например философия математики, философия физики, философия химии, философия биологии.

Философия науки как направление западной и отечественной философии представлена множеством оригинальных концепций, предлагающих ту или иную модель развития науки и эпистемологии. Она сосредоточена на выявлении роли и значимости науки, характеристик когнитивной, теоретической деятельности.

Философия науки как философская дисциплина, наряду с философией истории, логикой, методологией, культурологией, исследующей свой срез рефлексивного отношения мышления к бытию (в данном случае к бытию науки), возникла в ответ на потребность осмыслить социокультурные функции науки в условиях НТР. Это молодая дисциплина, которая заявила о себе лишь во второй половине XX в. В то время как направление, имеющее название «философия науки», возникло столетием раньше.

Предмет

«Предметом философии науки, - как отмечают исследователи, - являются общие закономерности и тенденции научного познания как особой деятельности по производству научных знаний, взятых в их историческом развитии и рассматриваемых в исторически изменяющемся социокультурном контексте».

Философия науки имеет статус исторического социокультурного знания независимо от того, ориентирована она на изучение естествознания или социально-гуманитарных наук. Философа науки интересует научный поиск, «алгоритм открытия», динамика развития научного знания, методы исследовательской деятельности. (Следует отметить, что философия науки хотя и интересуется разумным развитием наук, но всё же не призвана непосредственно обеспечивать их разумное развитие, как это призвана многоотраслевая метанаука.) Если основная цель науки - получение истины, то философия науки является одной из важнейших для человечества областей применения его интеллекта, в рамках которой ведется обсуждение вопроса «как возможно достижение истины?».

Основные направления философии науки

Непосредственной предшественницей философии науки является гносеология XVII-XVIII вв. (как эмпирическая, так и рационалистическая), в центре которой было осмысление сущности научного знания и методов его получения. Гносеологические вопросы были центральной темой классического этапа философии Нового времени - от Р. Декарта и Дж. Локка до И. Канта. Без понимания этих вопросов нельзя понять философию науки XIX-XX вв.

Как отдельное направление философии, философия науки оформилась в XIX в. В её развитии можно выделить несколько этапов.

Позитивизм:

Позитивизм проходит ряд стадий, традиционно называемых первым позитивизмом, вторым позитивизмом (эмпириокритицизмом) и третьим позитивизмом (логический позитивизм, неопозитивизм). Общей чертой всех перечисленных течений является эмпиризм, восходящий к Ф. Бэкону, и неприятие метафизики, под которой позитивисты понимают классическую философию Нового времени - от Декарта до Гегеля. Также для позитивизма в целом характерен односторонний анализ науки: считается, что наука оказывает существенное влияние на культуру человечества, в то время как сама она подчиняется лишь своим внутренним законам и не подвержена влиянию социальных, исторических, эстетических, религиозных и прочих внешних факторов.

Основные черты позитивизма:

наука и научная рациональность признается высшей ценностью;

требование перенесения естественнонаучных методов в гуманитарные науки;

попытка избавить науку от умозрительных построений, требование все проверять опытом;

вера в прогресс науки.

Критика позитивизма:

1. Мир рассматривается как механический агрегат частных областей, где сумма частностей дает целое.

2. Мир не содержит никаких целостных, всеобщих свойств и законов.

3. Отрицание философии, которое ведет к отрицанию партийности философии, что влечет за собой впадение в наихудшую философию.

4. Последняя реальность - ощущения, что свидетельствует о заимствовании логики субъективного идеализма (лежит ли что-нибудь за ощущениями проверить нельзя).

Основные этапы развития науки.

В ранних человеческих обществах познавательные и производственные моменты были неразделимы, первоначальные знания носили практический характер, выполняя роль как бы руководства определенными видами деятельности человека. Накопление таких знаний составило важную предпосылку будущей науки.

Для возникновения собственно науки нужны были соответствующие условия: определенный уровень развития производства и общественных отношений, разделение умственного и физического труда и наличие широких культурных традиций, обеспечивающих восприятие достижений других народов и культур.

Соответствующие условия раньше всего сложились в Древней Греции, где первые теоретические системы возникли в VI в. до н.э. Такие мыслители, как Фалес и Демокрит, уже объясняли действительность через естественные начала в противовес мифологии, Древнегреческий ученый Аристотель первым описал закономерности природы, общества и мышления, выдвигая на передний план объективность знания, логичность, убедительность. В момент познания была введена система абстрактных понятий, закладывались основы доказательного способа изложения материала; начали обособляться отдельные отрасли знания: геометрия (Евклид), механика (Архимед), астрономия (Птолемей).

Ряд областей знания был обогащен в эпоху средневековья учеными Арабского Востока и Средней Азии: Ибн Ста, или Авиценна, (980-1037), Ибн Рушд (1126-1198), Бируни (973-1050). В Западной Европе из-за господства религии родилась специфическая философская наука - схоластика, а также получили развитие алхимия и астрология. Алхимия способствовала созданию базы для науки в современном смысле слова, поскольку опиралась на опытное изучение природных веществ и соединений и подготовила почву для становления химии. Астрология связана была с наблюдением за небесными светилами, что также развивало опытную базу для будущей астрономии.

Важнейшим этапом развития науки стало Новое время - XVI-XVII вв. Здесь определяющую роль сыграли потребности нарождавшегося капитализма. В этот период было подорвано господство религиозного мышления, и в качестве ведущего метода исследовании утвердился эксперимент (опыт), который наряду с наблюдением радикально расширил сферу познаваемой реальности. В это время теоретические рассуждения стали соединяться с практическим освоением природы, что резко усилило познавательные возможности науки Это глубокое преобразование науки, произошедшее в XVI-XVII вв., считают первой научной революцией, давшей миру такие имена, как Г.Галшей (1564-1642), (1571-1630), У.Гарвей (1578-1657), Р.Декарт (1596-1650), Х.Гюйгенс (1629-1695), И.Ньютон (1643-1727) и др.

Научная революция XVII в., связана с революцией в естествознании. Развитие производительных сил требовало создания новых машин, внедрения химических процессов, законов механики, конструирования точных приборов для астрономических наблюдений.

Научная революция прошла несколько этапов, и ее становление заняло полтора столетия. Ее начало положено Н.Коперником и его последователями Бруно, Галилеем, Кеплером. В 1543 г. польский ученый Н.Коперник (1473-1543) опубликовал книгу «Об обращениях небесных сфер», в которой утвердил представление о том, что Земля так же, как и другие планеты Солнечной системы, обращается вокруг Солнца, являющегося центральным телом Солнечной системы. Коперник установил, что Земля не является исключительным небесным телом, чем был нанесен удар по антропоцентризм и религиозным легендам, в соответствии с которыми Земля якобы занимает центральное положение во Вселенной. Была отвергнута геоцентрическая система Птолемея.

Галилею принадлежат крупнейшие достижения в области физики и разработки самой фундаментальной проблемы - движения, огромны его достижения в астрономии: обоснование и утверждение гелиоцентрической системы, открытие четырех самых крупных спутников Юпитера из 13 известных в настоящее время; открытие фаз Венеры, необычайного вида планеты Сатурн, создаваемого, как известно теперь, кольцами, представляющими совокупность твердых тел; огромного количества звезд, не видимых невооруженным взглядом. Галилей добился успеха в научных достижениях в значительной мере потому, что в качестве исходного пункта познания природы признавал наблюдения, опыт.

Современный мир характеризуется как период бурного развития научно-технических аспектов жизнедеятельности человека, которые естественно находят свое применение в экономической сфере, снижая физическую нагрузку на человека. Однако очевидные преимущества использования научно-технических достижений имеют и обратную сторону, которая в курсе культурологии фиксируется как проблема социокультурных последствий научно-технической революции.

Ньютон создал основы механики, открыл закон всемирного тяготения и разработал на его основе теорию движения небесных тел. Это научное открытие прославило Ньютона навечно. Ему принадлежат такие достижения в области, механики, как введение понятий силы, инерции, формулировка трех законов механики; в области оптики - открытие рефракции, дисперсии, интерференции, дифракции света; в области математики - алгебра, геометрия, интерполяция, дифференциальное и интегральное исчисление.

В XVIII веке революционные открытия были совершены в астрономии И.Кантом (172-4-1804) и П. Лапласом (1749-1827), а также в химии - ее начало связано с именем АЛ.Лавуазье (1743-1794). К этому периоду относится деятельность М.В. Ломоносова (1711-1765), предвосхитившего многое из последующего развития естествознания.

В XIX веке в науке происходили непрерывные революционные перевороты во всех отраслях естествознания.

Опора науки Нового времени на эксперимент, развитие механики заложили фундамент для установления связи науки с производством. В то же время к началу XIX в. накопленный наукой опыт, материал в отдельных областях уже не укладывался в рамки механистического объяснения природы и общества. Потребовался новый виток научных знаний и более глубокий и широкий синтез, объединяющий результаты отдельных наук. В этот исторический период науку прославили Ю.Р. Майер (1814-1878), Дж. Джоулъ (1818-1889), Г. Гелъмголъц (1821-1894), открывшие законы сохранения и превращения энергии, что обеспечило единую основу для всех разделов физики и химии. Огромное значение в познании мира имело создание Т.Шванном (1810-1882) и М. Шлейденом (1804-1881) клеточной теории, показавшей единообразную структуру всех живых организмов. Ч. Дарвин (1809-1882), создавший эволюционное учение в биологии, внедрил идею развития в естествознание. Благодаря периодической системе элементов, открытой гениальным русским ученым Д.И. Менделеевым (1834-1907), была доказана внутренняя связь между всеми известными видами вещества.

Таким образом, к рубежу XIX-XX вв. произошли крупные изменения в основах научного мышления, механистическое мировоззрение исчерпало себя, что привело классическую науку Нового времени к кризису. Этому способствовали помимо названных выше, открытие электрона и радиоактивности. В результате разрешения кризиса произошла новая научная революция, начавшаяся в физике и охватившая все основные отрасли науки, Она связана прежде всего с именами М. Планка (1858-1947) и А.Эйнштейна (1879-1955), Открытие электрона, радия, превращения химических элементов, создание теории относительности и квантовой теории ознаменовали прорыв в область микромира и больших скоростей. Успехи физики оказали влияние на химию. Квантовая теория, объяснив природу химических связей, открыла перед наукой и производством широкие возможности химического преобразования вещества; началось проникновение в механизм наследственности, получила развитие генетика, сформировалась хромосомная теория.

К середине XX века на одно из первых мест в естествознании выдвинулась биология, где совершены такие фундаментальные открытия, как установление молекулярной структуры ДНК Ф. Криком (род. 1916) и Дж. Уотсоном (род. 1928), открытие генетического кода.

Наука в настоящее время - это чрезвычайно сложное общественное явление, имеющее многосторонние связи с миром. Ее рассматривают с четырех сторон (как и любое другое общественное явление - политику, мораль, право, искусство, религию):

1) с теоретической, где наука - система знаний, форма общественного сознания;

2) с точки зрения общественного разделения труда, где наука - форма деятельности, системой отношений между учеными и научными учреждениями;

3) с точки зрения социального института;

4) с точки зрения практического применения выводов науки со стороны ее общественной роли.

В настоящее время научные дисциплины принято подразделять на три большие группы: естественные, общественные и технические. Отрасли науки различаются по своим предметам и методам. В то же время резкой грани между ними нет и ряд научных дисциплин занимает промежуточное междисциплинарное положение, например, биотехнология, радиогеология.

Науки подразделяют на фундаментальные и прикладные. Фундаментальные науки познанием законов, управляющих поведением и взаимодействием базисных структур природы, общества и мышления. Эти законы изучаются в «чистом виде», поэтому фундаментальные науки иногда называют чистыми науками.

Цель прикладных наук - применение результатов фундаментальных наук для решения не только познавательных, но и социально-практических проблем.

Создание теоретического задела для прикладных наук обусловливает, как правило, опережающее развитие фундаментальных наук по сравнению с прикладными. В современном обществе, в развитых индустриальных странах ведущее место принадлежит именно теоретическому, фундаментальному знанию, и роль его все время повышается. В цикле «фундаментальные исследования - разработки - внедрение» - установка на сокращение сроков движения.

Заключение.

В своей работе я рассмотрела основные этапы азвития науки. Раскрывая тему, я показала, что наука была актуальна в древние времена, она актуальна и на сегодняшний день. И несомненно, наука будет актуальна и в будущем.

Говорят, что если бы не было Баха, то мир никогда бы не услышал музыки. Но если бы не родился Эйнштейн, то теория относительности рано или поздно была бы открыта каким-нибудь ученым.

Знаменитый афоризм Ф. Бэкона: «Знание – сила» сегодня актуален как никогда. Тем более, если в обозримом будущем человечество будет жить в условиях так называемого информационного общества, где главным фактором общественного развития станет производство и использование знания, научно-технической и другой информации. Возрастание роли знания (а в ещё большей мере – методов её получения) в жизни общества неизбежно должно сопровождаться усилением знания наук, специально анализирующих знание, познание и методы исследования.

Нау­ка есть по­сти­же­ние ми­ра, в ко­то­ром мы жи­вем. Со­от­вет­ст­вен­но нау­ку при­ня­то оп­ре­де­лять как вы­со­ко­ор­га­ни­зо­ван­ную и вы­со­ко­спе­циа­ли­зи­ро­ван­ную дея­тель­ность по про­из­вод­ст­ву объ­ек­тив­ных зна­ний о ми­ре, вклю­чаю­щем и са­мо­го че­ло­ве­ка.