Логика природы есть самая доступная и самая полезная логика для детей.

Константин Дмитриевич Ушинский (03.03.1823–03.01.1871) – русский педагог, основоположник научной педагогики в России.

БИОФИЗИКА: РЕАКТИВНОЕ ДВИЖЕНИЕ В ЖИВОЙ ПРИРОДЕ

Предлагаю читателям зелёных страничек заглянуть в увлекательный мир биофизики и познакомиться с основными принципами реактивного движения в живой природе . Сегодня в программе: медуза корнерот – самая крупная медуза Чёрного моря, морские гребешки , предприимчивая личинка стрекозы-коромысла , восхитительный кальмар с его непревзойдённым реактивным двигателем и замечательные иллюстрации в исполнении советского биолога и художника-анималиста Кондакова Николая Николаевича.

По принципу реактивного движения в живой природе передвигается целый ряд животных, например медузы, морские моллюски гребешки, личинки стрекозы-коромысла, кальмары, осьминоги, каракатицы… Познакомимся с некоторыми из них поближе;-)

Реактивный способ движения медуз

Медузы – одни из самых древних и многочисленных хищников на нашей планете! Тело медузы на 98% состоит из воды и в значительной части составлено из обводнённой соединительной ткани – мезоглеи , функционирующей как скелет. Основу мезоглеи составляет белок коллаген. Студенистое и прозрачное тело медузы по форме напоминает колокол или зонтик (в диаметре от нескольких миллиметров до 2,5 м ). Большинство медуз двигаются реактивным способом , выталкивая воду из полости зонтика.


Медузы Корнероты (Rhizostomae), отряд кишечнополостных животных класса сцифоидных. Медузы (до 65 см в диаметре) лишены краевых щупалец. Края рта вытянуты в ротовые лопасти с многочисленными складками, срастающимися между собой с образованием множества вторичных ротовых отверстий. Прикосновение к ротовым лопастям может вызвать болезненные ожоги , обусловленные действием стрекательных клеток. Около 80 видов; обитают преимущественно в тропических, реже в умеренных морях. В России – 2 вида : Rhizostoma pulmo обычен в Чёрном и Азовском морях, Rhopilema asamushi встречается в Японском море.

Реактивное бегство морских моллюсков гребешков

Морские моллюски гребешки , обычно спокойно лежащие на дне, при приближении к ним их главного врага – восхитительно медлительной, но чрезвычайно коварной хищницы – морской звезды – резко сжимают створки своей раковины, с силой выталкивая из неё воду. Используя, таким образом, принцип реактивного движения , они всплывают и, продолжая открывать и захлопывать раковину, могут отплывать на значительное расстояние. Если же гребешок по какой-то причине не успевает спастись своим реактивным бегством , морская звезда обхватывает его своими руками, вскрывает раковину и поедает…


Морской Гребешок (Pecten), род морских беспозвоночных животных класса двустворчатых моллюсков (Bivalvia). Раковина гребешка округлая с прямым замочным краем. Поверхность её покрыта расходящимися от вершины радиальными ребрами. Створки раковины смыкаются одним сильным мускулом. В Чёрном море обитают Pecten maximus, Flexopecten glaber; в Японском и Охотском морях – Mizuhopecten yessoensis (до 17 см в диаметре).

Реактивный насос личинки стрекозы-коромысла

Нрав у личинки стрекозы-коромысла , или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса . Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения , личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.

Реактивные импульсы нервной «автострады» кальмаров

Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени , необходима повышенная проводимость нервов , которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель . Такая большая проводимость возможна при большом диаметре нерва.

Известно, что у кальмаров самые крупные в животном мире нервные волокна . В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с . А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм . Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч .

Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает , – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»

Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой» .

Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м , включая длину щупалец).
Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч ), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м ).

Реактивный двигатель кальмара

Реактивное движение , используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам . Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров . Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу;-)


В сущности, кальмар располагает двумя принципиально различными двигателями (рис. 1а ). При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся в виде бегущей волны вдоль корпуса тела. Для быстрого броска кальмар использует реактивный двигатель . Основой этого двигателя является мантия – мышечная ткань. Она окружает тело моллюска со всех сторон, составляя почти половину объёма его тела, и образует своеобразный резервуар – мантийную полость – «камеру сгорания» живой ракеты , в которую периодически засасывается вода. В мантийной полости находятся жабры и внутренние органы кальмара (рис. 1б ).

При реактивном способе плавания животное производит засасывание воды через широко открытую мантийную щель внутрь мантийной полости из пограничного слоя. Мантийная щель плотно «застёгивается» на специальные «запонки-кнопки» после того как «камера сгорания» живого двигателя наполнится забортной водой. Расположена мантийная щель вблизи середины тела кальмара, где оно имеет наибольшую толщину. Сила, вызывающая движение животного, создаётся за счёт выбрасывания струи воды через узкую воронку, которая расположена на брюшной поверхности кальмара. Эта воронка, или сифон, – «сопло» живого реактивного двигателя .

«Сопло» двигателя снабжено специальным клапаном и мышцы могут его поворачивать. Изменяя угол установки воронки-сопла (рис. 1в ), кальмар плывёт одинаково хорошо, как вперёд, так и назад (если он плывет назад, – воронка вытягивается вдоль тела, а клапан прижат к её стенке и не мешает вытекающей из мантийной полости водяной струе; когда кальмару нужно двигаться вперёд, свободный конец воронки несколько удлиняется и изгибается в вертикальной плоскости, её выходное отверстие сворачивается и клапан принимает изогнутое положение). Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.

Кальмар и его реактивный двигатель – рисунок 1


1а) кальмар – живая торпеда; 1б) реактивный двигатель кальмара; 1в) положение сопла и его клапана при движении кальмара назад и вперёд.

На забор воды и её выталкивание животное затрачивает доли секунды. Засасывая воду в мантийную полость в кормовой части тела в периоды замедленных движений по инерции, кальмар тем самым осуществляет отсос пограничного слоя, предотвращая таким образом срыв потока при нестационарном режиме обтекания. Увеличивая порции выбрасываемой воды и учащая сокращения мантии, кальмар легко увеличивает скорость движения.

Реактивный двигатель кальмара очень экономичен , благодаря чему он может достигать скорости 70 км/ч ; некоторые исследователи считают, что даже 150 км/ч !

Инженеры уже создали двигатель, подобный реактивному двигателю кальмара : это водомёт , действующий при помощи обычного бензинового или дизельного двигателя. Почему же реактивный двигатель кальмара по-прежнему привлекает внимание инженеров и является объектом тщательных исследований биофизиков? Для работы под водой удобно иметь устройство, работающее без доступа атмосферного воздуха. Творческие поиски инженеров направлены на создание конструкции гидрореактивного двигателя , подобного воздушно-реактивному

По материалам замечательных книг:
«Биофизика на уроках физики» Цецилии Бунимовны Кац ,
и «Приматы моря» Игоря Ивановича Акимушкина


Кондаков Николай Николаевич (1908–1999) – советский биолог, художник-анималист , кандидат биологических наук. Основным вкладом в биологическую науку стали выполненные им рисунки различных представителей фауны. Эти иллюстрации вошли во многие издания, такие как Большая Советская Энциклопедия, Красная книга СССР , в атласы животных и в учебные пособия.

Акимушкин Игорь Иванович (01.05.1929–01.01.1993) – советский биолог, писатель – популяризатор биологии , автор научно-популярных книг о жизни животных. Лауреат премии Всесоюзного общества «Знание». Член Союза писателей СССР. Наиболее известной публикацией Игоря Акимушкина является шеститомная книга «Мир Животных» .

Материалы этой статьи полезно будет применить не только на уроках физики и биологии , но и во внеклассной работе.
Биофизический материал является чрезвычайно благодатным для мобилизации внимания учащихся, для превращения абстрактных формулировок в нечто конкретное и близкое, затрагивающее не только интеллектуальную, но и эмоциональную сферу.

Литература:
§ Кац Ц.Б. Биофизика на уроках физики

§ § Акимушкин И.И. Приматы моря
Москва: издательство «Мысль», 1974
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988

Сегодня реактивное движение у большинства людей в первую очередь, конечно же, ассоциируется с новейшими научными и техническими разработками. Из учебников по физике нам известно, что под «реактивным» подразумевают движение, которое возникает в результате отделения от предмета (тела) любой его части. Человек хотел подняться в небо к звёздам, стремился летать, но осуществить свою мечту смог только с появлением реактивных самолетов и ступенчатых космических кораблей, способных перемещаться на огромные расстояния, разгоняясь до сверхзвуковых скоростей, благодаря установленным на них современным реактивным двигателям. Конструктора и инженеры разрабатывали возможность использования реактивного движения в двигателях. Фантасты тоже не оставались в стороне, предлагая самые невероятные идеи и способы достижения этой цели. Удивительно, но этот принцип перемещения широко распространен в живой природе. Достаточно осмотреться вокруг, можно заметить обитателей морей и суши, среди которых есть и растения, в основе движения которых лежит реактивный принцип.

История

Еще в античные времена ученые с интересом изучали и анализировали явления, связанные с реактивным движением в природе. Одним из первых, кто теоретически обосновал и описал его суть, был Герон, механик и теоретик Древней Греции, который изобрел первый паровой двигатель, названый в честь него. Китайцы смогли найти реактивному методу практическое применение. Они первыми, взяв за основу способ передвижения каракатиц и осьминогов, еще в XIII веке изобрели ракеты. Они применялись в фейерверках, производя большое впечатление, а также, как сигнальные ракеты, возможно были и боевые ракеты, которые использовались как реактивная артилерия. Со временем эта технология пришла и в Европу.

Первооткрывателем нового времени стал Н. Кибальчич, придумав схему прототипа летательного аппарата с реактивным двигателем. Он был выдающимся изобретателем и убежденным революционером, за что сидел в тюрьме. Именно находясь в заключении, он вошел в историю, создав свой проект. После его казни за активную революционную деятельность и выступления против монархии, его изобретение было забыто на архивных полках. Спустя некоторое время К.Циолковский смог усовершенствовать идеи Кибальчича, доказывая возможность исследовать космическое пространство посредством реактивного перемещения космических кораблей.

Позже, в ходе Великой Отечественной войны, появились знаменитые Катюши, системы полевой реактивной артиллерии. Так ласковым именем народ неофициально именовал мощные установки, которые применяли силы СССР. Достоверно неизвестно, в связи с чем, оружие получило это название. Причиной этому стала то ли популярность песни Блантера, то ли буква «К» на корпусе миномёта. Со временем фронтовики стали давать прозвища и другому оружию, создав, таким образом, новую традицию. Немцы же эту боевую ракетную установку называли «сталинским органом» за внешний вид, который напоминал музыкальный инструмент и пронзительный звук, который исходил от стартующих ракет.

Растительный мир

Представителями фауны также используются законы реактивного движения. Большую часть растений, обладающих такими свойствами составляют однолетники и малолетники: колючеплодник, чесночница черешчатая, сердечник недотрога, пикульник двунадрезный, мёрингия трёхжилковая.

Колючеплодник, иначе бешеный огурец, относят к семейству тыквенных. Это растение достигает больших размеров, имеет толстый корень с шершавым стеблем и крупными листьями. Произрастает на территории Средней Азии, Средиземноморья, на Кавказе, довольно распространен на юге России и Украины. Внутри плода в период созревания семян преобразуется в слизь, которая под действием температур начинает бродить и выделять газ. Ближе к созреванию давление внутри плода может достигнуть 8 атмосфер. Тогда при легком прикосновении плод отрывается от основания и семена с жидкостью со скоростью 10 м/с вылетают из плода. Благодаря способности стрелять на 12 м. в длину, растение назвали «дамский пистолет».

Сердечник недотрога — однолетний широко распространённый вид. Встречается, как правило, в тенистых лесах, по берегам вдоль рек. Попав в северо-восточную часть Северной Америки и в Южную Африку, благополучно прижился. Сердечник-недотрога размножается семенами. Семена у сердечника-недотроги мелкие, массой не более 5 мг, которые отбрасываются на расстояние в 90 см. Благодаря такому способу распространения семян, растение и получило свое название.

Животный мир

Реактивное движение — интересные факты, касающиеся животного мира. У головоногих моллюсков реактивное перемещение происходит посредством воды, выдыхаемой через сифон, который обычно сужается к небольшому отверстию для получения максимальной скорости выдоха. Вода через жабры проходит до выдоха, выполняя двойную цель дыхания и перемещения. Морские зайцы, иначе брюхоногие моллюски, используют аналогичные средства движения, но без сложного неврологического аппарата головоногих, они перемещаются более неуклюже.

Некоторые рыбы-рыцари также развили реактивное перемещение, пропуская воду через жабры, чтобы дополнить плавниковое движение.

У личинок стрекоз реактивная сила достигается путем вытеснения воды из специализированной полости в организме. Морские гребешки и кардиды, сифонофоры, туники (такие, как сальпы) и некоторые медузы, также используют реактивную тягу.

Большую часть времени морские гребешки спокойно лежат на дне, но в случае появления опасности, быстро смыкают створки своей раковины, так они выталкивают воду. Этот механизм поведения тоже говорит об использовании принципа реактивного перемещения. Благодаря ему, гребешки могут всплывать и перемещаться на большое расстояние, применяя технику открытия-закрытия раковины.

Кальмар также применяет этот метод, вбирает в себя воду, а затем с огромной силой проталкивая через воронку движется скоростью не менее 70 км./ч. Собирая щупальцы в один узел, тело кальмара образует обтекаемую форму. Взяв за основу такой двигатель кальмара, инженерами был сконструирован водомет. Вода в нем засасывается в камеру, а после выбрасывается через сопло. Таким образом, судно направляется в обратную сторону от выбрасываемой струи.

Если сравнить с кальмарами, наиболее эффективными двигателями пользуются сальпы, тратя на порядок меньше энергии, чем кальмары. Двигаясь сальпа запускает воду в отверстие спереди, а затем поступает в широкую полость, где натянуты жабры. После глотка отверстие закрывается, а с помощью сокращающихся продольных и поперечных мускул, которые сжимают тело, происходит выброс воды через отверстие сзади.

Самым необычным из всех механизмов передвижения может похвастаться обыкновенная кошка. Марсель Депре высказал предположение, что тело способно двигаться и изменять свое положение даже с помощью одних только внутренних сил (ни от чего не отталкиваясь и ни на что не опираясь), из чего можно было сделать вывод, что законы Ньютона могут быть ошибочны. Доказательством его предположению могла послужить кошка, которая сорвалась с высоты. Во время падения вниз головой, она все равно приземлится на все лапы, это стало уже своего рода аксиомой. Детально сфотографировав перемещение кошки, смогли по кадрам рассмотреть, все, что она проделывала в воздухе. Увидели ее движение лапой, которое вызвало ответную реакцию туловища, поворачиваясь в другую сторону относительно движения лапки. Действуя по законам Ньютона, кошка удачно приземлилась.

У животных все происходит на уровне инстинкта, человек в свою очередь делает сознательно. Профессиональные пловцы, прыгнув с вышки успевают трижды обернуться в воздухе, и сумев приостановить вращение, выпрямляются строго вертикально и ныряют в воду. Этот же принцип действует в отношении воздушных цирковых гимнастов.

Сколько бы человек не пытался превзойти природу, совершенствуя созданные ею изобретения, все равно мы пока не достигли того технологического совершенства, когда бы самолеты могли повторить действия стрекозы: зависать в воздухе, мгновенно подаваться назад или двигаться в сторону. Причем все это происходит на большой скорости. Возможно, пройдет еще немного времени и самолеты, благодаря поправкам на особенности аэродинамики и реактивные возможности стрекоз, смогут совершать крутые развороты и станут менее восприимчивы к внешним условиям. Подсмотрев у природы, человек еще многое может усовершенствовать на благо технического прогресса.

Номинация «Окружающий мир»

Готовясь к празднованию Нового Года, я украшала квартиру воздушными шариками. Когда я надувала шарики, то один из них вырвался из рук и с большой скоростью полетел от меня в противоположную сторону. Я задала себе вопрос: что же произошло с шариком? Родители объяснили, что это реактивное движение. Неужели шарик летает так же, как ракета?

Гипотеза, которую я выдвинула в ходе исследования: возможно, реактивное движение встречается в природе и повседневной жизни.

Цели работы:

  • изучить физические принципы реактивного движения
  • выявить, где в природе и повседневной жизни встречается реактивное движение.

Чтобы подтвердить или опровергнуть мою гипотезу, я поставила перед собой задачи:

  • провести опыты, иллюстрирующие реактивное движение,
  • прочитать научно-популярную литературу о реактивном движении,
  • найти соответствующие материалы в Интернете,
  • создать презентацию по данной темe.

ИСТОРИЧЕСКАЯ СПРАВКА

Реактивное движение применялось еще при изготовлении первых пороховых фейерверочных и сигнальных ракет в Китаев Xвеке. В конце XVIII века индийские войска в борьбе с английскими колонизаторами использовали боевые ракеты на чёрном дымном порохе. В России пороховые ракеты были приняты на вооружение в начале XIX века.

Во время Великой Отечественной войны немецкие войска применяли баллистические ракеты Фау-2, обстреливая английские и бельгийские города. Советские войска с большим успехом использовали установки залпового огня «Катюша».

Прародители реактивных двигателей:

  • греческий математик и механик Герон Александрийский (Приложение 2.1), создатель эолипила (геронов шар);
  • венгерский ученый Янош Сегнер (Приложение 2.3),который создал "сегнерово колесо";
  • Первым применить реактивное движение для полетов в космос предложил Н. И. Кибальчич;
  • Дальнейшая теоретическая разработка ракетоплавания принадлежит русскому ученому Циолковскому К.Э.
  • Его труды вдохновили С.П.Королёва на создание летательных аппаратов для полета человека в космос. Благодаря его идеям впервые в мире был осуществлен запуск искусственного спутника Земли (04.10.57г) и первого пилотируемого ИСЗ с летчиком - космонавтом на борту Ю.А. Гагариным (12 апреля 1961 г.).

ФИЗИЧЕСКИЕ ПРИНЦИПЫ РЕАКТИВНОГО ДВИЖЕНИЯ И УСТРОЙСТВО РАКЕТЫ

Реактивное движение основано на принципе действия и противодействия: если одно тело воздействует на другое, то при этом на него самого будет действовать точно такая же сила, но направленная в противоположную сторону.

Я провела опыт, который доказывает, что каждому действию есть равное противодействие. (видеофрагмент)

Современная космическая ракета это очень сложный и тяжелый летательный аппарат, состоящий из сотен тысяч и миллионов деталей. Она состоит из рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной "сухой" массы ракеты, остающейся после выброса из ракеты раскаленных газов (это оболочка ракеты, т. е. системы жизнеобеспечения космонавтов, аппаратура и т. д.). Для достижения космических скоростей применяют многоступенчатые ракеты. Когда реактивная газовая струя выбрасывается из ракеты, сама ракета устремляется в противоположную сторону, разгоняясь до 1-й космической скорости: 8 км/с.

Я провела опыт по взаимодействию тележек и доказала, что чем больше масса топлива, тем большую скорость приобретает ракета. Значит для полетов космос требуется огромное количество топлива.

РЕАКТИВНОЕ ДВИЖЕНИЕ В ПРИРОДЕ

Итак, где же в природе встречается реактивное движение? Рыбы плавают, птицы летают, звери бегают. Вроде бы все просто. Как бы не так. Охота к перемене мест у животных не каприз, а суровая необходимость. Хочешь есть - умей шевелиться. Не хочешь, чтобы тебя съели - умей улизнуть. Чтобы быстро передвигаться в пространстве, нужно развивать большие скорости.

Для этого, например, морской гребешок - обзавелся реактивным двигателем. Он энергично выбрасывает из раковины воду и пролетает расстояние, которое в 10-20 раз больше его собственной длины! Сальпа , личинки стрекоз , рыбы - все они используют принцип реактивного движения, для перемещения в пространстве. Осьминог развивает скорость до 50 км/час и это благодаря реактивной тяге. Он даже по суше может прогуляться, т.к. есть у него на этот случай запас воды за пазухой. Кальмар - самый крупный беспозвоночный обитатель океанских глубин передвигается по принципу реактивного движения.

Примеры реактивного движения можно обнаружить и в мире растений. В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием "бешеный огурец ". Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода фонтаном со скоростью до 10 м/с вылетает жидкость с семенами. Сами огурцы при этом отлетают в противоположном направлении. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.

В быту на примере душа на гибком шланге можно увидеть проявление реактивного движения. Стоит только пустить в душ воду, как рукоятка с распылителем на конце отклонится в противоположную вытекающим струям сторону.

На принципе реактивного движения основана работа дождевальных установок (Приложение 7.2) для полива посадок в садах и огородах. Напор воды вращает головку с распылителями воды.

Принцип реактивного движения помогает движению пловца . Чем сильнее пловец отталкивает воду назад, тем быстрее он плывёт. (Приложение 7.3)

Инженеры уже создали двигатель, подобный двигателю кальмара. Его называют водометом. (Приложение 7.4)

ЗАКЛЮЧЕНИЕ

В ходе работы:

1. Я выяснила, что принцип реактивного движения это - физический закон действия и противодействия

2. Экспериментальным путем подтвердила зависимость скорости движения тела от массы, действующего на него другого тела.

3. Убедилась, что реактивное движение встречается в технике, быту и природе и даже мультфильмах.

4. Теперь, зная о реактивном движении, я могу избежать многих неприятностей, например, спрыгивая с лодки на берег, стреляя из ружья, включая душ и т. д.

Итак, я могу утверждать, что гипотеза, выдвинутая мною подтвердилась: принцип реактивного движения очень распространен в природе и повседневной жизни.

ЛИТЕРАТУРА

  • Книга для чтения по физике 6-7 класс.И.Г.Кириллова,- М: Просвещение, 1978. -97-99с
  • Физика - юным для внеклассного чтения 7 класс. М.Н. Алексеева,-М: Просвещение,1980.- 113 с
  • Здравствуй,физика.Л.Я.Гальперштейн,-М: Детская литература, 1967. - 39-41с
  • Энциклопедия Наука.А.Крейг,К.Росни,-М: Росмэн,1997.- 29 с
  • Привет осьминогу.Журнал «Миша», 1995, № 8 , 12-13с
  • Ноги,крылья и даже …реактивный двигатель.Журнал «Миша», 1995, № 8 , 14с
  • Википедия: -ru.wikipedia.org

У многих людей само понятие «реактивного движения» крепко ассоциируется с современными достижениями науки и техники, в особенности физики, а в голове появляются образы реактивных самолетов или даже космических кораблей, летающих на сверхзвуковых скоростях с помощью пресловутых реактивных двигателей. На самом же деле явление реактивного движения намного более древнее, чем даже сам человек, ведь оно появилось задолго до нас, людей. Да, реактивное движение активно представлено в природе: медузы, каракатицы вот уже миллионы лет плавают в морских пучинах по тому же самому принципу, по которому сегодня летают современные сверхзвуковые реактивные самолеты.

История реактивного движения

С древних времен различные ученые наблюдали явления реактивного движения в природе, так раньше всех о нем писал древнегреческий математик и механик Герон, правда, дальше теории он так и не зашел.

Если же говорить о практическом применении реактивного движения, то первыми здесь были изобретательные китайцы. Примерно в XIII веке они догадались позаимствовать принцип движения осьминогов и каракатиц при изобретении первых ракет, которые они начали использовать, как для фейерверков, так и для боевых действий (в качестве боевого и сигнального оружия). Чуть позднее это полезное изобретение китайцев переняли арабы, а от них уже и европейцы.

Разумеется, первые условно реактивные ракеты имели сравнительно примитивную конструкцию и на протяжении нескольких веков они практически никак не развивались, казалось, что история развития реактивного движения замерла. Прорыв в этом деле произошел только в XIX веке.

Кто открыл реактивное движение?

Пожалуй, лавры первооткрывателя реактивного движения в «новом времени» можно присудить Николаю Кибальчичу, не только талантливому российскому изобретателю, но и по совместительству революционеру-народовольцу. Свой проект реактивного двигателя и летательного аппарата для людей он создал сидя в царской тюрьме. Позднее Кибальчич был казнен за свою революционную деятельность, а его проект так и остался пылиться на полках в архивах царской охранки.

Позднее работы Кибальчича в этом направлении были открыты и дополнены трудами еще одного талантливого ученого К. Э. Циолковского. С 1903 по 1914 год им было опубликовано ряд работ, в которых убедительно доказывалась возможность использования реактивного движения при создании космических кораблей для исследования космического пространство. Им же был сформирован принцип использования многоступенчатых ракет. И по сей день многие идеи Циолковского применяются в ракетостроении.

Примеры реактивного движения в природе

Наверняка купаясь в море, Вы видели медуз, но вряд ли задумывались, что передвигаются эти удивительные (и к тому же медлительные) существа как раз таки с благодаря реактивному движению. А именно с помощью сокращения своего прозрачного купола они выдавливают воду, которая служит своего рода «реактивных двигателем» медуз.

Похожий механизм движения имеет и каракатица – через особую воронку впереди тела и через боковую щель она набирает воду в свою жаберную полость, а затем энергично выбрасывает ее через воронку, направленную взад либо в бок (в зависимости от направления движения нужного каракатице).

Но самый интересный реактивный двигатель созданный природой имеется у кальмаров, которых вполне справедливо можно назвать «живыми торпедами». Ведь даже тело этих животных по своей форме напоминает ракету, хотя по правде все как раз с точностью наоборот – это ракета своей конструкцией копирует тело кальмара.

Если кальмару необходимо совершить быстрый бросок, он использует свой природный реактивный двигатель. Тело его окружено мантией, особой мышечной тканью и половина объема всего кальмара приходится на мантийную полость, в которую тот всасывает воду. Потом он резко выбрасывает набранную струю воды через узкое сопло, при этом складывая все свои десть щупалец над головой таким образом, чтобы приобрести обтекаемую форму. Благодаря столь совершенной реактивной навигации кальмары могут достигать впечатляющей скорости – 60-70 км в час.

Среди обладателей реактивного двигателя в природе есть и растения, а именно так званный «бешеный огурец». Когда его плоды созревают, в ответ на самое легкое прикосновение он выстреливает клейковиной с семенами

Закон реактивного движения

Кальмары, «бешеные огурцы», медузы и прочие каракатицы издревле пользуются реактивным движением, не задумываясь о его физической сути, мы же попробуем разобрать, в чем суть реактивного движения, какое движение называют реактивным, дать ему определение.

Для начала можно прибегнуть к простому опыту – если обычный воздушный шарик надуть воздухом и, не завязывая отпустить в полет, он будет стремительно лететь, пока у него не израсходуется запас воздуха. Такое явление поясняет третий закон Ньютона, говорящий, что два тела взаимодействуют с силами равными по величине и противоположными по направлению.

То есть сила воздействия шарика на вырывающиеся из него потоки воздуха равна силе, которой воздух отталкивает от себя шарик. По схожему с шариком принципу работает и ракета, которая на огромной скорости выбрасывает часть своей массы, при этом получая сильное ускорение в противоположном направлении.

Закон сохранения импульса и реактивное движение

Физика поясняет процесс реактивного движения . Импульс это произведение массы тела на его скорость (mv). Когда ракета находится в состоянии покоя ее импульс и скорость равны нулю. Когда же из нее начинает выбрасываться реактивная струя, то остальная часть согласно закону сохранения импульса, должна приобрести такую скорость, при которой суммарный импульс будет по прежнему равен нулю.

Формула реактивного движения

В целом реактивное движение можно описать следующей формулой:
m s v s +m р v р =0
m s v s =-m р v р

где m s v s импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и сила реактивного движения струи противоположны.

Реактивное движение в технике – принцип работы реактивного двигателя

В современной технике реактивное движение играет очень важную роль, так реактивные двигатели приводят в движение самолеты, космические корабли. Само устройство реактивного двигателя может отличаться в зависимости от его размера и назначения. Но так или иначе в каждом из них есть

  • запас топлива,
  • камера, для сгорания топлива,
  • сопло, задача которого ускорять реактивную струю.

Так выглядит реактивный двигатель.