Из огромного многообразия всевозможных множеств особый интерес представляют так называемые числовые множества , то есть, множества, элементами которых являются числа. Понятно, что для комфортной работы с ними нужно уметь их записывать. С обозначений и принципов записи числовых множеств мы и начнем эту статью. А дальше рассмотрим, как числовые множества изображаются на координатной прямой.

Навигация по странице.

Запись числовых множеств

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A , H , W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

  • N – множество всех натуральных чисел;
  • Z – множество целых чисел;
  • Q – множество рациональных чисел;
  • J – множество иррациональных чисел;
  • R – множество действительных чисел;
  • C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q , это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A .

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z , таким образом, числовое множество N включено в Z , это обозначается как N⊂Z . Также можно использовать запись Z⊃N , которая означает, что множество всех целых чисел Z включает множество N . Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в , что согласуется с общими правилами описания множеств . Например, множество, состоящее из трех чисел 0 , −0,25 и 4/7 можно описать как {0, −0,25, 4/7} .

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99 включительно можно записать как {3, 5, 7, …, 99} .

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …} .

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства} . Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3 . Это же множество можно описать как {11,19, 27, …} .

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N , Z , R , и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10 , −9 , −8,56 , 0 , все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞) . В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞) . Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0} , [−5, −1,3] и (7, +∞) .

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими элементами [−10, 0] и (−5, 3) есть полуинтервал [−10, 3) . Это же относится и к объединению числовых промежутков с одинаковыми граничными числами, например, объединение (3, 5]∪(5, 7] представляет собой множество (3, 7] , на этом мы отдельно остановимся, когда будем учиться находить пересечение и объединение числовых множеств .

Изображение числовых множеств на координатной прямой

На практике удобно пользоваться геометрическими образами числовых множеств – их изображениями на . Например, при решении неравенств , в которых необходимо учитывать ОДЗ, приходится изображать числовые множества, чтобы найти их пересечение и/или объединение. Так что полезно будет хорошо разобраться со всеми нюансами изображения числовых множеств на координатной прямой.

Известно, что между точками координатной прямой и действительными числами существует взаимно однозначное соответствие, что означает, что сама координатная прямая представляет собой геометрическую модель множества всех действительных чисел R . Таким образом, чтобы изобразить множество всех действительных чисел, надо начертить координатную прямую со штриховкой на всем ее протяжении:

А часто даже не указывают начало отсчета и единичный отрезок:

Теперь поговорим про изображение числовых множеств, представляющих собой некоторое конечное число отдельных чисел. Для примера, изобразим числовое множество {−2, −0,5, 1,2} . Геометрическим образом данного множества, состоящего из трех чисел −2 , −0,5 и 1,2 будут три точки координатной прямой с соответствующими координатами:

Отметим, что обычно для нужд практики нет необходимости выполнять чертеж точно. Часто достаточно схематического чертежа, что подразумевает необязательное выдерживание масштаба, при этом важно лишь сохранять взаимное расположение точек относительно друг друга: любая точка с меньшей координатой должна быть левее точки с большей координатой. Предыдущий чертеж схематически будет выглядеть так:

Отдельно из всевозможных числовых множеств выделяют числовые промежутки (интервалы, полуинтервалы, лучи и т.д.), что представляют их геометрические образы, мы подробно разобрались в разделе . Здесь не будем повторяться.

И остается остановиться лишь на изображении числовых множеств, представляющих собой объединение нескольких числовых промежутков и множеств, состоящих из отдельных чисел. Здесь нет ничего хитрого: по смыслу объединения в этих случаях на координатной прямой нужно изобразить все составляющие множества данного числового множества. В качестве примера покажем изображение числового множества (−∞, −15)∪{−10}∪[−3,1)∪ {log 2 5, 5}∪(17, +∞) :

И остановимся еще на достаточно распространенных случаях, когда изображаемое числовое множество представляет собой все множество действительных чисел, за исключением одной или нескольких точек. Такие множества частенько задаются условиями типа x≠5 или x≠−1 , x≠2 , x≠3,7 и т.п. В этих случаях геометрически они представляют собой всю координатную прямую, за исключением соответствующих точек. Иными словами, из координатной прямой нужно «выколоть» эти точки. Их изображают кружочками с пустым центром. Для наглядности изобразим числовое множество, соответствующее условиям (это множество по сути есть ):

Подведем итог. В идеале информация предыдущих пунктов должна сформировать такой же взгляд на запись и изображение числовых множеств, как и взгляд на отдельные числовые промежутки: запись числового множества сразу должна давать его образ на координатной прямой, а по изображению на координатной прямой мы должны быть готовы с легкостью описать соответствующее числовое множество через объединение отдельных промежутков и множеств, состоящих из отдельных чисел.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

Множество — это набор каких-либо объектов. Объекты, из которых состоит множество, называются элементами этого множества.

Например: множество школьников, множество машин, множество чисел .

В математике множество рассматривается намного шире. Мы не будем сильно углубляться в эту тему, поскольку она относится к высшей математике и на первых порах может создавать трудности для обучения. Мы рассмотрим только ту часть темы, с которой уже имели дело.

Содержание урока

Обозначения

Множество чаще всего обозначают заглавными буквами латинского алфавита, а его элементы - строчными. При этом элементы заключаются в фигурные скобки.

Например, если наших друзей зовут Том, Джон и Лео , то мы можем задать множество друзей, элементами которого будут Том, Джон и Лео.

Обозначим множество наших друзей через заглавную латинскую букву F (friends ), затем поставим знак равенства и в фигурных скобках перечислим наших друзей:

F = { Том, Джон, Лео }

Пример 2 . Запишем множество делителей числа 6.

Обозначим через любую заглавную латинскую букву данное множество, например, через букву D

затем поставим знак равенства и в фигурных скобках перечислим элементы данного множества, то есть перечислим

D = { 1, 2, 3, 6 }

Если какой-то элемент принадлежит заданному множеству, то эта принадлежность указывается с помощью знака принадлежности ∈ . К примеру, делитель 2 принадлежит множеству делителей числа 6 (множеству D ). Записывается это так:

2 ∈ D

Читается как « 2 принадлежит множеству делителей числа 6«

Если какой-то элемент не принадлежит заданному множеству, то эта не принадлежность указывается с помощью зачёркнутого знака принадлежности . К примеру, делитель 5 не принадлежит множеству D . Записывается это так:

5 ∉ D

Читается как « 5 не принадлежит множеству делителей числа 6«

Кроме того, множество можно записывать прямым перечислением элементов, без заглавных букв. Это может быть удобным, если множество состоит из небольшого количества элементов. Например, зададим множество из одного элемента. Пусть этим элементом будет наш друг Том :

{ Том }

Зададим множество, которое состоит из одного числа 2

{ 2 }

Зададим множество, которое состоит из двух чисел: 2 и 5

{ 2, 5 }

Множество натуральных чисел

Это первое множество с которым мы начали работать. Натуральными числами называют числа 1, 2, 3 и т.д.

Натуральные числа появились из-за потребности людей сосчитать те иные объекты. Например, посчитать количество кур, коров, лошадей. Натуральные числа возникают естественным образом при счёте.

В прошлых уроках, когда мы употребляли слово «число» , чаще всего подразумевалось именно натуральное число.

В математике множество натуральных чисел обозначается заглавной латинской буквой N .

Например, укажем, что число 1 принадлежит множеству натуральных чисел. Для этого записываем число 1, затем с помощью знака принадлежности ∈ указываем, что единица принадлежит множеству N

1 ∈ N

Читается как: «единица принадлежит множеству натуральных чисел»

Множество целых чисел

Множество целых чисел включает в себя все положительные и , а также число 0.

Множество целых чисел обозначается заглавной латинской буквой Z .

Укажем, к примеру, что число −5 принадлежит множеству целых чисел:

−5 ∈ Z

Укажем, что 10 принадлежит множеству целых чисел:

10 ∈ Z

Укажем, что 0 принадлежит множеству целых чисел:

В будущем все положительные и отрицательные числа мы будем называть одним словосочетанием — целые числа .

Множество рациональных чисел

Рациональные числа, это те самые обыкновенные дроби, которые мы изучаем по сей день.

Рациональное число — это число, которое может быть представлено в виде дроби , где a — числитель дроби, b — знаменатель.

В роли числителя и знаменателя могут быть любые числа, в том числе и целые (за исключением нуля, поскольку на нуль делить нельзя).

Например, представим, что вместо a стоит число 10, а вместо b — число 2

10 разделить на 2 равно 5. Видим, что число 5 может быть представлено в виде дроби , а значит число 5 входит во множество рациональных чисел.

Легко заметить, что число 5 также относится и ко множеству целых чисел. Стало быть множество целых чисел входит во множество рациональных чисел. А значит, во множество рациональных чисел входят не только обыкновенные дроби, но и целые числа вида −2, −1, 0, 1, 2.

Теперь представим, что вместо a стоит число 12, а вместо b — число 5.

12 разделить на 5 равно 2,4. Видим, что десятичная дробь 2,4 может быть представлена в виде дроби , а значит она входит во множество рациональных чисел. Отсюда делаем вывод, что во множество рациональных чисел входят не только обыкновенные дроби и целые числа, но и десятичные дроби.

Мы вычислили дробь и получили ответ 2,4. Но мы могли бы выделить в этой дроби целую часть:

При выделении целой части в дроби , получается смешанное число . Видим, что смешанное число тоже может быть представлено в виде дроби . Значит во множество рациональных чисел входят и смешанные числа.

В итоге мы приходим к выводу, что множество рациональных чисел содержат в себе:

  • целые числа
  • обыкновенные дроби
  • десятичные дроби
  • смешанные числа

Множество рациональных чисел обозначается заглавной латинской буквой Q .

Например укажем, что дробь принадлежит множеству рациональных чисел. Для этого записываем саму дробь , затем с помощью знака принадлежности ∈ указываем, что дробь принадлежит множеству рациональных чисел:

Q

Укажем, что десятичная дробь 4,5 принадлежит множеству рациональных чисел:

4,5 ∈ Q

Укажем, что смешанное число принадлежит множеству рациональных чисел:

Q

Вводный урок по множествам завершён. В будущем мы рассмотрим множества намного лучше, а пока рассмотренного в данном уроке будет достаточно.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Определение. Множество - это совокупность некоторых объектов, объединенных по какому-либо признаку.

Элементы, составляющие множество, обычно обозначаются малыми латинскими буквами, а само множество - большой латинской буквой. Знак ∈ используется для обозначения принадлежности элемента множеству. Запись a∈A означает, что элемент a принадлежит множеству A. Если некоторый объект x не является элементом множества A, пишут x∉A. Например, если A - это множество четных чисел, то 2∈A, а 1∉A. Множества A и B считаются равными (пишут A = B), если они состоят из одних и тех же элементов.

Если множество содержит конечное число элементов, его называют конечным; в противном случае множество называется бесконечным. Если множество A конечно, символом |A| будет обозначаться число его элементов. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом ∅. Очевидно, |∅|=0.

Пример . Пусть A - множество действительных решений квадратного уравнения x 2 + px + q = 0. Множество A конечно, |A|≤2. Если дискриминант D = p 2 -4q отрицателен, множество A пусто. Множество действительных решений квадратичного неравенства x 2 +px+q≤0 конечно, если D≤0, и бесконечно, если D>0.

Конечное множество может быть задано перечислением всех его элементов,

либо описываются их свойства. Если множество A состоит из элементов x, y, z, пишут A ={x, y, z,}. Например, A = {0, 2, 4, 6, 8} - множество четных десятичных цифр или - множество натуральных чисел, удовлетворяющих условию х + 2 = 1.

Введем используемое в дальнейшем понятие индексированного семейства множеств. Пусть I - некоторое множество, каждому элементу которого i сопоставлено однозначно определенное множество A i . Элементы множества I называют индексами, а совокупность множеств A i называют индексированным семейством множеств и обозначают через (A i) i ∈ I .

Говорят, что множество B является подмножеством множества A и пишут B⊂A, если всякий элемент множества B является элементом множества A. Например, множество натуральных чисел N является подмножеством множества целых чисел Z, а последнее в свою очередь является подмножеством множества рациональных чисел Q, то есть N⊂Z и Z⊂Q, или, короче, N⊂Z⊂Q. Легко видеть, что если B⊂A и A⊂B, то множества A и B состоят из одних и тех же элементов, и, значит, A=B, в противном случае . Наряду с обозначением B⊂A используется также A⊃B, имеющее тот же смысл.

Подмножества множества A, отличные от ∅ и A, называются собственными. Пустое множество и множество А называются несобственными подмножествами множества А. Совокупность всех подмножеств множества А называется его булеаном , или множеством-степенью , и обозначается через Р(А) или 2 А.


Пример . Пусть A = {a, b, c}. Тогда множество 2 A состоит из следующих элементов:

{∅}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}.

Если множество A конечно и содержит n элементов, то это множество имеет 2 n подмножеств, то есть |2 A |=2 | A | .

Все операции над множествами можно иллюстрировать с помощью диаграмм Эйлера-Венна. Если некоторое универсальное множество, содержащее как подмножества все другие множества, обозначить U и изобразить его в виде всей плоскости, то любое множество можно изобразить в виде части плоскости, т.е. в виде некоторой фигуры, лежащей на плоскости.

Объединением или суммой множеств А и В называют такое множество С, которое состоит из элементов множества А, или элементов множества В, или из элеметов обоих этих множеств, т.е. . Например, если A = {1, 2, 3} и B = {2, 3, 4}, то A∪B = {1, 2, 3, 4}.

Пересечением или произведением двух множеств А и В называется такое множество С, которое состоит из элементов, принадлежащих одновременно обоим множествам, т.е. . Например, если A = {1, 2, 3} и B = {2, 3, 4}, то A∩B = {2, 3}.

Разностью двух множеств А и В называется множество, состоящее из тех и только тех элементов, которые входят в А и одновременно не входят в В, т.е.

Например, если A = {1, 2, 3} и B ={2, 3, 4}, то A\B = {1}.

Если, в частности, А - подмножество U, то разность U \ A обозначается и называется дополнением множества А.

Симметрической разностью (кольцевой суммой) множеств А и В называется множество , т.е. . Например, если A ={1, 2, 3} и B = {2, 3, 4}, то AΔB = {1, 4}.

Законы алгебры множеств:

1. Коммутативный закон : .

2. Ассоциативный закон : .

3. Дистрибутивный закон :

4. Законы идемпотентности : , в частности

5. Законы поглощения :

6. Законы де Моргана (двойственности) :

7. Закон двойного дополнения :

8. Закон включения :

9. Закон равенства :

Пример 1. Проверим первый из законов де Моргана. Покажем сначала, что. Предположим, что . Тогда x∉A∩B, так что x не принадлежит хотя бы одному из множеств A и B. Таким образом, x∉A или x∉B, то есть или .

Это означает, что. Мы показали, что произвольный элемент множества является элементом множества. Следовательно, . Обратное включение доказывается аналогично. Достаточно повторить все шаги предыдущего рассуждения в обратном порядке.

Пример 2. Доказать включения

Решение. Легче всего это сделать по диаграмме Эйлера-Венна

Из любой пары элементов a и b (не обязательно различных) можно составить новый элемент - упорядоченную пару (a,b). Упорядоченные пары (a,b) и (c,d) считают равными и пишут (a,b) = (c,d), если a = c и b = d. В частности, (a,b) = (b,a) лишь в том случае, когда a=b. Элементы a и b называют координатами упорядоченной пары (a,b) .

Прямым (декартовым) произведением множеств A и B называется множество всех упорядоченных пар (a,b), где a∈A и b∈B. Прямое произведение множеств A и B обозначается через A×B. В соответствии с определением имеем

A×B = {(a,b)| a∈A, b∈B}. Произведение называется декартовым квадратом.

Пример 3. Даны множества А = {1; 2}; B = {2; 3}. Найти .

Решение.

Таким образом, декартово произведение не подчиняется коммутативному закону.

Пример 4. Пусть Из каких элементов состоят множества ?

Решение. Запишем множества А; В; С, перечислив их элементы:

А = {3; 4; 5; 6}; B = {2; 3}; C = {2}. Тогда Подобно парам, можно рассматривать упорядоченные тройки, четверки и, вообще, упорядоченные наборы элементов произвольной длины. Упорядоченный набор элементов длины n обозначается через (a 1 , a 2 , a n). Для таких наборов используется также название кортеж длины n. Допускаются в том числе и кортежи длины 1 - это просто одноэлементные множества. Кортежи (a 1 , a 2 , a n) и (b 1 , b 2 , b n) считаются равными, если a 1 = b 1 , a 2 = b 2 , a n = b n .

По аналогии с произведением двух множеств определим прямое произведение множеств A 1 , A 2 , A n как множество всех кортежей (a 1 , a 2 , a n) таких, что a 1 ∈A 1 , a 2 ∈A 2 , a n ∈A n . Обозначается прямое произведение через A 1 × A 2 × A n .

Понятие прямого произведения может быть обобщено на случай произвольного семейства множеств (A i) i ∈ I . Назовем I-кортежем набор элементов (A i) i ∈ I такой, что a i ∈A i для каждого i∈I. Прямое произведение семейства множеств (A i) i ∈ I - это множество, состоящее из всех I-кортежей. Для обозначения этого множества используется символ Π i ∈ I A i и его разновидности, подобные тем, которые применяются для обозначения пересечения и объединения семейства множеств.

В случае, когда множество A умножается само на себя, произведение называют (декартовой) степенью и используют экспоненциальные обозначения. Так, в соответствии с определением A × A = A 2 , A × A × A = A 3 и т. д. Считается, что A 1 = A и A 0 = ∅.

Непосредственно из определений следует справедливость следующих соотношений (A∪B) × C = (A × C) ∪ (B × C);

(A∩B) × C = (A × C) ∩ (B × C);

(A\B) × C = (A × C)\(B × C).

1. Судоплатов С.В., Овчинникова Е.В. Элементы дискретной математики. М.:ИНФРА-М, Новосибирск, 2002.

2. Асеев Г.Г., Абрамов О.М., Ситников Д.Э. Дискретная математика. Харьков, «Торсинг», 2003.

3. Нефедов В.Н., Осипова В.А. Курс дискретной математики. М.:Наука, 1973.

4. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. М.:ФИЗМАТЛИТ, 2001.

Математический анализ

Множество-это совокупность объектов любой природы. Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записываютx Х ( - принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( - содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:

§ А={1,2,3,5,7} - множество чисел

§ Х={x 1 ,x 2 ,...,x n } - множество некоторых элементов x 1 ,x 2 ,...,x n

§ N={1,2,...,n} - множество натуральных чисел

§ Z={0,±1,±2,...,±n} - множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число - точкой этой прямой. Пусть a - произвольная точка числовой прямой иδ - положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

2. Метод математической индукции (пример). Неравенство Бернулли.


3. Аксиоматика множества действительных чисел: операция сложения, операция умножения, отношение порядка.
4. Аксиоматика множества действительных чисел: аксиома Архимеда, аксиома Дедекинда.

АРХИМЕДА АКСИОМА

Аксиома, первоначально сформулированная для отрезков, заключающаяся в том, что, отложив достаточное число раз меньший из двух заданных отрезков, всегда можно получить отрезок, превосходящий больший из них. Аналогично А. а. формулируется для площадей, объемов, положительных чисел и т. д. Вообще, для данной величины имеет место А. а., если для любых двух значений этой величины таких, что , всегда можно найти целое число т, что ; на этом основан процесс последовательного деления в арифметике и геометрии (см. Евклида алгоритм ). Значение А. а. выяснилось с полной отчетливостью после того, как в 19 в. было обнаружено существование величин, по отношению к к-рым эта аксиома несправедлива,- т. н. неархимедовых величин

Дедекинда аксиома

одна из аксиом непрерывности (см. Непрерывности аксиомы). Д. а. гласит: если все точки прямой разбиты на два непустых класса, причём все точки первого класса расположены левее всех точек второго, то существует либо самая правая точка первого класса, либо самая левая точка второго


5. Модуль действительного числа и его свойства.

Абсолютной величиной (или модулем ) действительного числа х называется неотрицательное число , определяемое соотношением
Свойства модуля . 1. . 2. . 3. Неравенства и равносильны. 4. Модуль суммы двух действительных чисел меньше или равен сумме модулей этих чисел:

Это свойство справедливо для любого конечного числа слагаемых.

5. Модуль разности двух действительных чисел больше или равен разности модулей этих чисел:
. 6. Модуль произведения чисел равен произведению модулей этих чисел:
. Это свойство справедливо для любого конечного числа сомножителей. 7. Модуль частного двух чисел (если делитель отличен от нуля) равен частному модулей этих чисел:


6. Границы числовых множеств. Точные верхние и нижние границы числовых множеств.
7. Действительная функция действительного аргумента: элементарные функции их область определения и график, сложные и неэлементарные функции.
8. Способы задания функций, арифметические действия над функциями.
9. Простая классификация функций действительного аргумента.
10. Предел числовой последовательности и его геометрический смысл.
11. Свойства сходящихся последовательностей: теорема 1. Единственность предела (с доказательством). Теорема 2.
12. Бесконечно малые и бесконечно большие числовые последовательности: определения. Связь между ними.
13. Леммы о бесконечно малых числовых последовательностях. Следствия. Примеры.
14. Теоремы о пределах числовых последовательностей. Следствия.
15. Вычисление пределов числовых последовательностей: правила раскрытия неопределенностей вида, . Вывод. Пример.
16. Предельный переход в неравенствах: Теорема 1. (о сохранении знака предела). Теорема 2 (предельный переход в неравенствах). Теорема 3 (о сжатой последовательности). Теорема Вейерштрасса.
17. Число e (с доказательством). Натуральные логарифмы.
18. Предельные точки множества.
19. Определение предел функции в точке по Коши и его геометрический смысл.
20. Определение предела функции в точке по Гейне. Основные теоремы о пределе функции. Вычисление предела функции в точке: правило раскрытия неопределенности вида Пример.
21. Предел функции по множеству. Односторонние приделы. Замечания.
22. Первый замечательный предел (с доказательством). Следствия.
23. Второй замечательный предел. Замечания. Замечательные пределы, связанные с показательной и логарифмической функциями. Замена переменной под знаком предела. Пример.
24. Непрерывность и точки разрыва функции. Свойства непрерывных функций.
25. Производные простых функций: определение производной функции, геометрический смысл производной функции. Уравнения касательной и нормали к кривой.
26. Основные правила дифференцирования функций. Производные элементарных функций. Пример.
27. Производная сложной функции. Логарифмическое дифференцирование. Производная показательно-степенной функции.
28. .Дифференциал функции и его геометрический и механический смысл. Вывод.
29. Основные правила нахождения дифференциала функции. Дифференциал сложной функции. Инвариантность формы дифференциала первого порядка. .
30. Производные и дифференциалы высших порядков функции. Механический и геометрический смысл второй производной. Формула Лейбница.
31. Основные теоремы дифференцирования: теорема Ферма, теорема Роля и их геометрический смысл.
32. Основные теоремы дифференцирования: теорема Лагранжа, теорема Коши и их геометрический смысл.
33. Приложения производной: правило Лопиталя для раскрытия неопределенностей вида и, раскрытие неопределенностей вида. Пример.
34. Первообразная функции и неопределенный интеграл. Свойства неопределенного интеграла. Таблица основных интегралов.
35. Методы интегрирования функций: непосредственное интегрирование; метод замены переменной; метод интегрирования по частям.
36. Определение и свойства определенного интеграла.
37. Вычисление определенного интеграла. Формула Ньютона-Лейбница. Методы интегрирования в определенном интеграле: замена переменной, метод интегрирования по частям.
38. Числовые ряды. Сходимость и расходимость числовых рядов. Необходимый признак сходимости рядов.
39. Достаточные признаки сходимости числовых рядов: признак сравнения, предельный признак сравнения.
40. Достаточные признаки сходимости числовых рядов: радикальный признак Коши, признак Даламбера.

Теория множеств.

Множества. Пустое множество. Универсальное множество. Подмножества. Собственное подмножество. Способы задания множеств. Мощность множества. Равномощные множества. Конечные и счётные множества. Операции над множествами (объединение, пересечение, дополнение, разность, симметрическая разность). Законы алгебры множеств. Характеристические функции. Декартово произведение множеств. Отношения и свойства отношений. Функции на множествах.

Определение множества.

Множество - это совокупность определённых различаемых объектов, причём таких, что для каждого можно установить, принадлежит этот объект данному множеству или нет.

Множества обычно обозначаются заглавными латинскими буквами, а элементы множества - строчными. Элементами множеств могут быть любые объекты, например, числа, символы, слова, объекты реального мира. В частности, элементами множества могут быть другие множества.

Например:

A = { a, b, c } - множество A состоящее из 3 элементов

N = { 1, 2, 3, … } - множество N целых чисел

Элементы множества являются уникальными, то есть, один и тот же элемент не может включаться в множество несколько раз (в отличие от векторов и мультимножеств). Считается, что при добавлении в множество элемента, который в нем уже присутствует, множество не меняется.

Порядок записи элементов множества не является существенным (в отличие от записи элементов векторов, где порядок важен).

Таким образом, множества считаются равными, если они состоят из одних и тех же элементов.

Если некоторый объект является элементом множества , то этот факт записывается следующим образом: и читается «x принадлежит А». Аналогично, если элемент не является элементом множества , используется запись («y не принадлежит А»).

Пустое множество – это множество, не содержащее элементов. Пустое множество может быть обозначено с использованием фигурных скобок: = { }. Однако, множество B = { } не является пустым: это множество, содержащее один элемент, который является пустым множеством.

Универсальное множество Е – множество всех объектов, рассматриваемых в данной задаче.

Конечные и бесконечные множества. Если количество элементов множества конечно (то есть существует натуральное число, равное количеству элементов множества), то такое множество называется конечным. В противном случае множество называется бесконечным.

Мощность множества или кардинальное число |A| (иногда card (A)). Мощность множества является обобщением понятия количества элементов на бесконечные множества. Для конечных множеств мощность равна количеству элементов множества.

Мощность пустого множества по определению равна нулю: .

Равномощные множества – это множества, между элементами которых можно установить взаимно однозначное соответствие.

Счётное множество – множество, равномощное множеству натуральных чисел.

Множество А называют подмножеством множества B (обозначается либо ) если все элементы, которые принадлежат множеству A, так же принадлежат и множеству B.

В этом случае B называют надмножеством A

Пустое множество является подмножеством любого множества.

Любое множество является подмножеством самого себя:

Любое множество является подмножеством универсального множества:

Два множества A и B равны тогда и только тогда, когда A является подмножеством B и B является подмножеством A.

Если множество A является подмножеством множества B, но A и B не равны, то в этом случае говорят что А является собственным подмножеством B (обозначается ).

Некоторые специальные множества : (Натуральные числа), (целые числа), (вещественные числа), (рациональные числа),