Схема такого преобразователя не новая, но она была переделана и в итоге переделки количество используемых радиодеталей резко сократилось.

Принципиальная схема преобразователя для лампы ЛДС представляет собой простой блокинг-генератор на мощном биполярном транзисторе MJE13007, опыт показал, что он справляется лучше всех, но возможна замена на более мощный, типа MJE13009. Такие транзисторы часто используют в компьютерных блоках питания ATX. Подстроечный резистор лучше использовать проволочный на пару ватт, его номинал 470 ом, но он может отклонится в ту или иную сторону на 20% - это на работу преобразователя не повлияет.

В качестве трансформатора использован Ш-образный ферритовый трансформатор из того-же компьютерного блока питания. Как правило у такого трансформатора 6 выводов со стороны понижающей обмотки и один отвод сверху. Именно к этому отводу подключаем плюс питания. Первый и последний вывод понижающей обмотки соответственно на коллектор транзистора и через резистор на базу, определенной полярности тут нету.

Далее собираем саму схему преобразователя для лампы. У сетевой обмотки трансформатора обычно 3 или 2 вывода, крайние выводы подключаем к лампе дневного освещения. Для плавного пуска можно последовательно к выводу подключить конденсатор на 400 вольт 1 микрофарад, хотя будет работать и без него. Транзистор нужно укрепить на небольшой теплоотвод.

Включаем схему и медленно вращаем подстроечный резистор, пока не добьемся максимального свечения лампы - это ограничительный резистор базового тока, который одновременно регулирует частоту. Хорошо собранный преобразователь не издает лишних звуков и имеет широкий диапазон питающих напряжений от 3,5 до 12 вольт (оптимальное - 6 вольт).

Предлагаемый преобразователь прост в повторении, не содержит дорогих и дефицитных деталей и в состоянии запитать люминесцентную лампу (ЛДС) мощностью до 18 Вт. После серии экспериментов был выбран вариант из двух ламп по 6 Вт – он оказался наиболее экономичным в отношении потребляемая мощность/яркость.

Преобразователь представляет собой классический блокинг-гененатор, собранный на транзисторе VT3 и трансформаторе Т1, который одновременно является и повышающим. В качестве нагрузки трансформатора используются две люминесцентные шестиваттные лампы TS F6T5. Диод VD1 защищает схему от неправильного подключения к аккумулятору – переполюсовки.

Узел, собранный на транзисторах VT1VT2 служит для визуального контроля состояния аккумуляторной батареи – если напряжение на ней упадет ниже критического, зажжется светодиод HL1 «Аккумулятор разряжен». В режиме ожидания узел потребляет ток около 1 мА, при срабатывании — 5 мА. Если контроль за состоянием батареи не нужен, то от этого узла (VT1, VT2, R1 – R5, С1, HL1) можно отказаться. Такой вариант сильно упростит схему преобразователя.

В конструкции можно использовать резисторы МЛТ, R2 лучше (но не обязательно) взять многооборотный СП5-3. С2 – К73-9, С1 – любой. На месте VT1 и VT2 будут работать КТ3102 или КТ315 с любой буквой. VD1 должен выдерживать ток, потребляемый преобразователем, который зависит от мощности используемой лампы. В качестве VT3 испытывались КТ815, КТ817 и КТ819. Последний с буквой «Г» оказался оптимальным, тем более, он имеет хороший запас по напряжению, что будет нелишним при случайном отключении лампы.

Импульсный трансформатор Т1 выполнен на магнитопроводе Б22 из феррита 2000НМ1. Первичная (I) обмотка содержит 9 витков провода ПЭВ-2 0.45 мм. Вторичная (II) – 10 витков того же провода, но диаметром 0.3 мм. Обе обмотки наматываются одновременно виток к витку. Обмотка III наматывается последней после двух слоев изоляции бумагой. Для одной лампы обмотка содержит 180, а для двух, соединенных последовательно, как изображено на схеме, — 240-250 витков провода ПЭВ-2 диаметром 0.16 мм.

Вся катушка после намотки пропитывается парафином и помещается в магнитопровод. Во время сборки магнитопровода между чашками нужно оставить зазор 0.2 мм – это толщина листа бумаги. При сборке устройства следует соблюдать фазировку обмоток I и II. Если после первого включения схема не заработает, то выводы одной из этих обмоток нужно поменять местами.

Далее регулировкой номинала резистора R6 добиваются приемлемой яркости свечения ламп, учитывая, что вместе с яркостью растет и потребляемый от аккумулятора ток. У автора достаточная яркость достигалась при потребляемом токе 650 мА, а предел тока при регулировки R6 при устойчивой работе генератора – 0.2 – 1.2 А

Перед включением и во время эксплуатации светильника обязательно следите за хорошим контактом проводов, соединяющих лампы с трансформатором. Даже кратковременная потеря контакта грозит пробоем транзистора VT3 и высоковольтной обмотки Т1.

В завершении хочется обратить внимание на то, что в конструкции могут работать лампы и со сгоревшими спиралями.

---->
---->

Преобразователь напряжения для люминесцентной лампы

И. НЕЧАЕВ, г. Курск

Этот преобразователь можно использовать для питания люминесцентных ламп мощностью до 20 Вт от аккумулятора или другого автономного источника напряжением 6... 12 В, например, в походных условиях. Его схема, подобная широко используемым во многих импортных портативных люминесцентных светильниках с батарейным питанием, показана на рис. 1.


Основа преобразователя - блокинг-генератор на транзисторе VT1 и трансформаторе Т1 - формирует короткие импульсы частотой 30...40 кГц и амплитудой 400 В, которые поступают на люминесцентную лампу EL1. Благодаря высокой частоте импульсов и инерционности люминофора мигание лампы совершенно незаметно.

При регулировке частоты с помощью переменного резистора R2 длительность импульсов остается постоянной. Изменяется их скважность, а с ней -яркость свечения лампы. Чем большее сопротивление введено, тем ниже частота и больше скважность, меньше яркость лампы и ток, потребляемый от источника питания (например, автомобильного аккумулятора). Во время испытания преобразователя с лампой F13W ток был равен 70 мА при минимальной и 800 мА при максимальной яркости.

Регулятор собран на односторонней печатной плате размерами 35x85 мм, фрагмент которой изображен на рис. 2.


На остальной ее части находятся (приклеены или укреплены винтами) трансформатор Т1 и транзистор VT1 с теплоотводом. Корпус переменного резистора R2 после пайки выводов также фиксируют клеем. Внешний вид смонтированной платы показан на рис. 3.


Ее помещают в корпус подходящего размера из изоляционного материала, выведя ось переменного резистора в отверстие на передней стенке. Лампу EL1 можно установить в стандартную или изготовленную самостоятельно из подручных материалов арматуру.

Вместо транзистора КТ841А можно применить КТ805А или КТ847А. Площадь теплоотвода должна составлять не менее 15 см2.

Магнитопровод трансформатора Т1 - броневой Б30 из феррита М1500НМ3. Он собран с немагнитным зазором 0,2...0,5 мм. Обмотка I - 24 витка ПЭВ-2 0,38...0,41 мм (в два провода), II - 7 витков такого же, но одиночного провода, III - 190 витков провода ПЭВ-2 0,18...0,2 мм. Последнюю надежно изолируют от других обмоток и магнитопровода лакотканью или изоляционной лентой.

К преобразователю можно подключать любые люминесцентные лампы мощностью 4...20 Вт, в том числе с перегоревшими нитями накаливания. Если мощность лампы менее 10 Вт, число витков обмотки III следует уменьшить.

Преобразователь сможет работать и при меньшем (вплоть до 6 В) напряжении питания, если число витков обмотки II уменьшить пропорционально напряжению. Однако его КПД заметно снижается, поэтому использовать лампы мощностью более 10 Вт в этом случае не рекомендуется.

При налаживании преобразователя резистор R1 подбирают таким образом, чтобы в правом (по схеме) положении движка переменного резистора R2 яркость свечения лампы субъективно воспринималась как номинальная, соответствующая ее подключению к сети по типовой схеме с "балластным" дросселем. Если перевод движка в противоположное положение уменьшает яркость недостаточно или чрезмерно, номинал переменного резистора следует соответственно увеличить или уменьшить.

Ю. БОРОДАТЫЙ, Р. КОТУРБАТ, с. Ривна, Ивано-Франковской обл.

Резонансный преобразователь напряжения отличается от импульсных и квазирезонансных преобразователей очень низкими потерями на переключательных транзисторах (1...2% от преобразуемой мощности). Его можно использовать для питания ламп дневного света (ЛДС) . Отсутствие стабилизатора дает возможность питать любые ЛДС, в том числе и с перегоревшими пусковыми спиралями.

Главной задачей при конструировании устройства было использование готового трансформатора от лампового телевизора ТС-180 (ТС-180-2), так как очень не хотелось заниматься изготовлением моточных узлов. Второй принцип, заложенный в самоделку - простота, так как это обеспечивает конструкции высокую надежность и ремонтопригодность

Схема (рис.1а) предназначена для питания ЛДС от аккумулятора и его зарядки от сети. Можно использовать даже аккумуляторы с одной закороченной банкой при увеличении емкостей С1 и С2 до 0,5 мкФ.

Для зарядки аккумулятора переключатель SA1 устанавливается в верхнее по схеме положение. Напряжение сети с трансформатора Т1 через диоды VD1 ...VD4 прикладывается к аккумулятору. При переходе в рабочий режим (питание ЛДС) SA1 устанавливается в нижнее по схеме положение. Иногда для запуска очень старых ламп требуется схема, повышающая потенциал базы VT1 иVТ2(рис.1б).

Преобразователь напряжения состоит из двух блокинг-генераторов, работающих синхронно. Контур, образованный емкостью базовых переходов транзисторов и обмоткой трансформатора, входит в резонанс с другим контуром, образованным емкостью лампы и вторичной обмоткой. Частота резонансных колебаний - 100...150 кГц. Уменьшив емкость конденсаторов до 0,1 мкФ, используя всего одну (можно с КЗ в витках!) катушку, можно сделать преобразователь по схеме, показанной на рис.2.

Детали. Транзисторы в схемах должны быть только мощные, в металлических корпусах, например КТ805. При повышении напряжения питания свыше 12,8 В КПД схемы несколько уменьшается, что приводит к нагреву транзисторов. В схеме, приведенной на рис.1, транзисторы и соответствующие им диоды можно расположить на двух радиаторах. Другие два диода можно прикрутить непосредственно к шасси. Нагрев транзисторов можно снизить уменьшением емкости конденсаторов, что облегчает запуск лампы, но снижает ее яркость свечения. В качестве HL1 используется любая лампа дневного света (6...40 Вт). Если конденсаторы греются, замените их на более качественные, с меньшей утечкой. Схемы некритичны к деталям.

В качестве Т1, кроме ТС-180, можно применить ТС-160 и другие аналогичные трансформаторы. При использовании только одной пустой катушки (рис.2) заполнять ее ферритовым "ломом", как описано в , не требуется. Транзисторы могут быть и p-n-р проводимости, если поменять полярность диодов и батареи.

Литература

1. Коновалов Е. Квазирезонансный преобразователь напряжения. - Радио, 1996, N2, С.52.
2. Бородатый Ю. Дневное от аккумулятора. - Дом, сад, огород, 1998. N4.
3. Бородатый Ю. Дневное от аккумулятора. - Электрик, 2000, N4.

Краткие комментарии схемы. Это двухтактный импульсный преобразователь, собранный на ШИМ-контроллере TL494 (полный отечественный аналог 1114ЕУ4), что позволяет сделать схему довольно простой. На выходе стоят высокоэффективные выпрямительные диоды удваивающие напряжение по схеме Делона или Грайнмахера (не хотел ругаться). На выходе, разумеется, постоянное напряжение. Для электронных балластов постоянное напряжение и полярность включения не актуальна, т.к. в схеме балласта на входе стоит диодный мост (правда диоды там не такие "шустрые" как в нашем преобразователе).

В преобразователе используется готовый высокочастотный понижающий трансформатор из блока питания (БП) компьютера, но в нашем преобразователе он станет наоборот повышающим. Понижающий трансформатор можно взять как из AT так и из ATX БП. Из моей практики трансформаторы отличались только габаритами, а расположение выводов совпадало. Убитый БП (или трансформатор из него) можно найти в любой мастерской по ремонту компьютеров.

Трансформатор можно и самостоятельно намотать. Лично моего терпения сейчас хватает вручную намотать не более 20 витков, хотя в детстве мог намотать для транзисторного приемника контурную катушку в 100 витков; годы берут свое.

Итак, находим подходящее ферритовое кольцо (внешний диаметр примерно 20-30 мм). Соотношение витков примерно 1:1:20 , где 1:1 - две половинки первичной обмотки (10+10 витков), а:20 - соответственно, вторичная 200 витков. Сначала мотается вторичная - равномерно 200 витков проводом диаметром 0,3-0,4 мм. Затем равномерно две половинки первичной обмотки (мотаем 10 витков, делаем средний отвод, затем в том же направлении мотаем оставшиеся 10 витков). Для полуобмоток использую многожильный, серебреный монтажный провод диаметром 0,8 мм (можно не загоняться и использовать другой провод, но лучше многожильный и мягкий).

Предлагаю еще вариант изготовления (переделки) трансформатора. Вы можете приобрести т.н. " " для 12 вольтовых галогенных ламп подсветки потолков и мебели (в магазинах светового оборудования стоит от 80 руб). В нем стоит подходящий трансформатор на кольце. Нужно только снять вторичную обмотку, которая представляет собой десяток витков. А полуобмотки можно намотать иначе - кусок провода (длину рассчитаете) складываем вдвое и мотаем вдвое сложенным проводом; середину провода (место перегиба) разрезаем - получаем т.н. два конца (или два начала) обмоток. К концу одного провода припаиваем начало другого - получаем общую точку полуобмоток. Уверяю, у меня такой трансформатор работает. Необходимо отметить, что компьютерный трансформатор великолепно работает в схеме " ".

Для тех кто желает теории расчетов - см. раздел "Программы" и " "; в ней все доходчиво расписано. Частота преобразования около 100 кГц.

C1 - это 1 нанофарад, или 1000 пикофарад, или 0,001 микрофарад (все варианты величины емкости равны между собой); на корпусе кодировка 102; я ставил 152 - работает, но, предполагаю, что на меньшей частоте.

R1 и R2 - задают ширину импульсов на выходе. Схему можно упростить и не ставить эти элементы, при этом 4й контакт TL494 посадить на минус; я не вижу нужды широкими импульсами насиловать транзисторы.

R3 (совместно с C1) задает рабочую частоту. Уменьшаем сопротивление R1 - увеличиваем частоту. Увеличиваем емкость C1 - уменьшаем частоту. И наоборот.

Транзисторы - мощные МОП (металл-окисел-полупроводник) полевые транзисторы, которые характеризуются меньшим временем срабатывания и более простыми схемами управления. Одинаково хорошо работают IRFZ44N, IRFZ46N, IRFZ48N (чем больше цифра - тем мощнее и дороже).

В преобразователе применены диоды HER307 (подойдут 304, 305, 306-е). Отлично работают отечественные КД213 (дороже, габаритнее и надежнее).

Конденсаторы на выходе можно и меньшей емкости, но с рабочим напряжением 200 В. Использованы конденсаторы из того же компьютерного БП диаметром не более 18 мм (либо редактируйте рисунок печатной платы).

Микросхему установите на панель; так будет легче жить.

Налаживание сводится к внимательной установке микросхемы в панель. Если не работает, проверьте наличие подводимого напряжения 12 В. Проверьте R1 и R2, не перепутали? Все должно работать.

Радиатор не нужен, т.к. продолжительная работа не вызывает ощутимый нагрев транзисторов. А если возникнет желание поставить на радиатор, то, внимание, фланцы корпусов транзисторов не закорачивать через радиатор. Используйте изоляционные прокладки и шайбы втулки от компьютерного БП. Для первого пуска радиатор не помешает; по крайней мере транзисторы сразу не сгорят в случае ошибок монтажа или КЗ на выходе, или при "случайном" подключении лампы накаливания на 220 В.

Питание схемы должно быть убедительным, т.к. потребляемый ток одного экземпляра "экономичной" ЛДС от герметичного кислотного аккумулятора у меня составил 1,4 А при напряжении 11,5 В; итого 16 Вт (хотя на упаковке лампы написано 26 Вт).

Защиту схемы от перегрузки и переплюсовки можно реализовать через предохранитель и диод на входе.

Будьте осторожны! На выходе схемы высокое напряжение и очень серьезно может ударить. Потом не говорите, что не предупреждал. Конденсаторы держат заряд больше суток - проверено на людях. Разрядных цепей на выходе нет. Закорачивание не допускается, разряжайте либо лампой накаливания на 220 В, либо через сопротивление на 1 мОм.

Для преобразователя сделано два рисунка печатной платы, в зависимости от габаритов трансформатора. Размер платы 50х55 мм.


Трансформатор я "варил" в кипятке и пытался разобрать, но безуспешно, как видите - верхушка феррита немного сколота; выкидывать было жалко, теперь стоит в этой плате.

Как всегда у меня корпус - самая незавершенная часть готового устройства. Лампа светит слишком ярко, поэтому фотка, как я ни старался, получилась засвеченной. Вот еще фото преобразователя, он у меня стоит в автостробоскопе; здесь трансформатор поменьше.