Сам принцип действия лампы прост — все построено на том, что раскаленные предметы могут выбрасывать в пространство свободные электроны. Однако, за 50 лет использования ламп они настолько усложнились, что дискретным транзисторам до них далеко…

Итак, если раскалить металлический проводник и подать на него «минус», то свободные электроны будут вылетать из этого проводника, он называется катодом. Если же поставить недалеко другой проводник и присоединить к нему «плюс» (называется анодом), то электроны не только будут вылетать из катода и образовывать облако вокруг него, но и целенаправленно полетят к аноду. Потечет электрический ток.

Вся проблема постройки электронных ламп в том, что электроны должны лететь с катода на анод в вакууме. Причем в вакууме высоком, если внутри лампы останется газ, то он от движения электронов вспыхнет и получится газоразрядная лампа. Это, конечно, тоже результат, но совсем не тот, которого мы добиваемся (хотя с газонаполненными электронными лампами тоже есть варианты).

Итак, мы сделали металлическую колбу, откачали оттуда воздух и вставили два электрода. При этом продумали, как раскалить один из них, для этого часто делают дополнительную нагревательную проволочку, такие катода называются катодами косвенного накала. Включили в сеть, катод засветился добела — ток потек. Ну и что, зачем эта штука нужна? Вся фишка в том, что если поменять полюса батареи, то через лампу ток не потечет — анод ведь холодный и электронов не выбрасывает.
Поздравляю, мы получили ламповый диод .

Диод, несомненно, вещь неплохая. Можно даже детекторный приемник сделать.
Но толку от него немного.


А весь толк получился тогда, когда в 1906 году догадались ввести внутрь лампы третий электрод — сетку, поставив ее между катодом и анодом.
Дело в том, что если на сетку подать даже слабый «минус», то облако электронов, которое собралось возле катода не полетит к «плюсовому» аноду, потому что внутри лампы чистая электростатика, электроны толкает закон Кулона, а в таком виде лампа «заперта».
Но стоит на сетку подать «плюс», то лампа «откроется» и ток потечет.
И мы, подав слабое напряжение на сетку, можем управлять достаточно сильным током, который протекает между катодом и анодом — мы получили активный элемент, триод . Отношение напряжение между катодом и анодом и катодом и сеткой называется коэффициентом усиления, в хорошем триоде он может достигать близко к 100 (больше не выходит по теоретическим соображениям для триодов).

Однако, это еще не все. Дело в том, что между электродами лампы образуется как бы конденсатор. Ведь и катод и анод и сетка — это электроды, разделенные диэлектриком — вакуумом. Емкость такого конденсатора очень мала — порядка пикофарад, но если у нас высокие частоты (начиная от мегагерц), то эта емкость все гадит — лампа перестает работать. Более того — лампа может самовозбуждаться и превратится в генератор.


В данном случае самым эффективным методом оказалось экранирование самой вредной емкости — между сеткой и анодом. То есть кроме трех электродов нужно ввести еще одну экранирующую сетку. На нее подавалось напряжение, примерно в половину анодного. Такая лампа с четырьмя сетками стала называться тетродом . Коэффициент усиления у нее возрос — до 500-600.

Но и это оказалось не все. Дело в том, что экранирующая сетка дополнительно разгоняет электроны, летящие к аноду и они ударяются об анод с такой силой, что выбивают вторичные электроны, которые долетают до экранирующей сетке и создают там ток. Это явление назвали динатронным эффектом.


Ну и как бороться с динатронным эффектом? Правильно — поставить еще одну сетку!
Ее нужно втыкнуть между экранирующей сеткой и анодом и подключить к катоду. Такая лампа называется пентод .
Именно пентод стал самой популярной лампой, именно его выпускали миллионными тиражами для всяческих нужд.
Нельзя сказать, что все отрицательные стороны электронной лампы у пентода отсутствовали. Но это был великолепный баланс между цена/надежность/характеристики. Да почему был? Он и остался.

Конечно, на пентоде все не закончилось, были еще гексоды, гептоды и октоды. Но они или не получили распространения (например, гексодов в мире почти не выпускалось), либо были лампами узкого назначения — например для супергетеродинов.

Все, что здесь описано — вроде немного, но это 60 лет развития электронных ламп, годы «нащупывания» параметров.
Ведь поначалу вообще было слабое понимание того, что происходит в лампе. Лампы были газонаполненные до 1915 года, а так перемещаются не электроны, а ионы, которые ведут себя немного иначе.
Кроме того — возня с материалами и формами электродов, изобретение ламповой схемотехники, да и с самими принципами ламп тоже игрались. Были всякие лампы бегущей волны, клистроны и магнетроны. А чего стоят лампы с механическим (!) управлением? А газонаполненные лампы, фотоэлементы, умножители, видиконы? Да тот же кинескоп — это по принципу действия электронная лампа!

Электронные лампы — это огромная область знания, которая за 60 лет существования накопила огромное количество материала.
Накопила — и умерла.
Сейчас лампы применяют только в очень узких направлениях — например, сверхмощные усилители или специальная аппаратура, которая выдерживает ядерный взрыв. Ведь электромагнитный импульс ядерного взрыва не сжигает ламповую аппаратуру, как случается с транзисторной — просто лампы при взрыве на долю секунды сбойнут и дальше заработают как ни в чем не бывало.

Ну и последнее — ламповая аппаратура в производстве куда проще полупроводниковой, требования к точности и чистоте материалов на порядки ниже. А вот это для попаданца самое главное!

91 комментарий Электронная лампа, принцип действия

    Боюсь что для попаданца это все не имеет значения. Ну разве что его занесет в первую мировую и он сразу усовершенствует триод до пентода.

    Причина проста- слишком широко двигать надо науку и технику чтобы воспользоваться этими знаниями.
    Вся радиоэлектронная технология это совокупность очень большого числа очень специфических знаний и умений.
    Попаданец, обладая этими знаниями (например он радиоэлектронщик со стажем) теоретически может изготовить какой то агрегат, но вот научить местных его производить- вряд ли.
    В лучшем случае научить (а вернее надрессировать группу исполнителей) производить строго определенную модель простого устройства. Это никак не продвинет науку и технику, это устройство будет неведомым артефактом и его компоненты будут неприменимы ни для чего другого (с точки зрения местных). И, как очевидно, изготовление такого малополезного устройства будет результатом огромных усилий! Нужно такое попаданцу? Нет.

    Попаданцу нужны не технологии опережающие время а упущенные технологии.
    Отличными примерами здесь на сайте являются пуля Нейслера и полевая кухня. Простые и понятные изобретения которые появились через века после того как возникла в них необходимость и технологическая возможность их создать.
    Пригодны так же технологии вроде термоса, не для того чтобы внедрять а чтобы продавать.
    Нечто, что с небольшими технологическими изысками можно изготовить, но оно будет иметь непонятное местным ноу-хау. Это не двигает науку но обогащает попаданца.
    Радиоэлектроника из за своей сложности не попадает ни в одну из этих категорий. Она слишком сложна и абстрактна для объяснений и слишком высокотехнологична для самостоятельного изготовления.

    • Согласен.

      Но я бы выделил третью категорию — «технологии запечатанного конверта». То что можно оставить потомкам(ну в лучшем случае внукам на свою старость) для ускорения прогресса. А сюда можно и устройство атомной бомбы записать.

      • А я как-то к этим письмам в будущее очень скептически отношусь.
        Вообще письма без адресата — странное явление.

    • >>Ну разве что его занесет в первую мировую

      А вы посмотрите на статистику попаданцев. Половина из них попадает в вторую мировую, процентов тридцать в средневековье и еще процентов 15 — к батюшке Царю, спасать от революции. Электронные лампы более чем актуальны. 😀

      >>но вот научить местных его производить- вряд ли

      Ну, на самом деле этот сайт как раз для того, чтобы собрать данные по теориям для «научить местных».
      То есть расширить понимание попаданца.
      И проблема тут не в том, что в этом всем нельзя разобраться — а просто потому, что у обычного человека очень узкий круг интересов и в остальное он не влазил никогда.

      >>Радиоэлектроника из за своей сложности не попадает ни в одну из этих категорий. Она слишком сложна и абстрактна для объяснений и слишком высокотехнологична для самостоятельного изготовления.

      Полный бред, от начала и до конца.
      Нет сложных вещей, есть недостаток понимания.
      Для примера — почитайте то, как сам Пифагор описывал свою теорему (не доказательство, а только формулировка!) — у него это все получалось очень сложно там ощущение высшей математики, хотя для нас это все для четвертого класса (или в каком сейчас учат Пифагора?).

      Более того — я могу вырезать вам кусок из переводной книги про электронные лампы, автора Leon Chaffee, 1933 года.
      Там читаешь — просто кошмар как наворочено, а потом начинаешь понимать, что большая часть — это мусор, казавшийся важным, но таким не являющийся, побочные процессы, забивающие понимание основных процессов.

      Если попаданец не в состоянии объяснить принцип действия — значит он сам его не понимает. Это незыблемое правило.
      И пофиг, насколько сложна или абстрактна теория — все зависит от ее уложения в голове рассказывающего.

      Другой вопрос — что ему будут не верить без работающего образца, но это уж как водится.
      Ну и совсем третий вопрос — а стоит ли двигать это в массы или создать каких-нибудь «новых розенкрейцеров» (статью потихоньку пишу)?

      • Статистика то вещь хорошая 🙂
        но, повторюсь, лампы пригодятся попаданцу только в первую мировую. Покачать триод до пентода- это мощный ход.
        Во вторую мировую пентод уже изобретен. если быть точным то 1926 году. т.е. зазор применения около 20-30 лет (триод можно лет на 10-15 раньше успеть создать).
        Проблема в том что раньше двигать идею в массы не получится, развитие физики не позволит этого. Сделать вундервафлю можно, а вот прогресс сдвинуть не так просто.
        Говоря о абстрактности и сложности радиотехники я подразумевал что она опирается на огромный пласт неочевидных знаний который ранее 1900 года отсутствовал. Представление о электроне и атоме (1911), о электросопротивлении (1843) о индуктивности и емкости (лень искать но тоже 19 век). Все это придется предварительно открыть, продемонстрировать окружающим. Продвинут науку… С средствами связи того времени это задача на многие годы.

        >>создать каких-нибудь «новых розенкрейцеров»
        А вот эта идея весьма разумна. И действенна. Привлечь неофитов, продемонстрировать свое могущество вундервафлями, сообщит что лишь этому обществу известна Истина (тм)…
        Но стоит учитывать что это будет не прогрессорство 🙂 И после смерти носителя знаний все пойдет кувырком. Кстати, смерть может произойти и раньше времени 😉 власть -отличная приманка!

        • >>Говоря о абстрактности и сложности радиотехники я подразумевал что она опирается на огромный пласт неочевидных знаний который ранее 1900 года отсутствовал

          Тут неважно что отсутствовало до попаданца.
          Это реально можно развить и наука того времени это все поднимет.
          Вот как раз науку двинуть будет самое легкое — там есть инертность мышления, но она все же меньше, чем в промышленности, потому как в науке всегда можно найти молодых ученых, а среди промышленников молодежи не бывает.

          >>Привлечь неофитов, продемонстрировать свое могущество вундервафлями, сообщит что лишь этому обществу известна Истина

          Дык я уже несколько статей на эту тему написал.
          Тут тоже есть подводные камни, но локальный рывок может оказаться очень заметен.

          >>И после смерти носителя знаний все пойдет кувырком.

          Я про это тоже писал. Те же Мормоны и саентологи сумели это пережить. Что будет с мунистами — посмотрим.

          • >Радиолампы пригодятся в любую войну. А возможность их создать появится где-то в районе войны 1912 года (которая сто лет называлась «Великой Отечественной»), ну и вообще во времена Наполеоновских войн.

            1912+100=2012, задолго до 2012-го Великой Отечественной называлась война 1941-го-1945-го годов. И каким боком здесь Наполеон?

      Ну, для электроники, особенно для транзисторов, все же есть интервал в несколько десятилетий, когда можно сильно опередить текущее состояние. Но это конец 19 начало 20 века. Если раньше — малоперспективно
      В более ранние периоды лучше копать в сторону цифровых механических и гидравлических вычислителей. Булева алгебра, будучи очень простым и понятным разделом математики, оформилась только к концу 19 века, хотя могла существовать и в древней Греции

      • Попаданцу нести внедрять транзисторы выгодней чем лампы. Лампы- тупик. Если попаданец оказался в конце 19 начале 20 века и собрался продвинуть радиоэлектронику (раньше- бесполезно) — протолкнуть транзисторы не на много сложнее чем лампы (с учетом общих объемов того что придется проталкивать, разница незначительна), а выгода намного больше. Это ведь скорый переход на микросхемы…

        Механические вычислители типа железного феликса — разумный максимум…
        Машина Бебиджа- безумный проект. Он осуществим (теоретически) но из за ненадежности (сотни тысяч а то и миллионы подвижных частей) ее практическое применение почти невозможно. Даже ЭНИАК работал с частыми перерывами из за постоянного выхода из строя его элементов, что говорить о механике.


        • Однако, в сети можно найти ролики, как люди самостоятельно сделали триод.
          И есть грустные истории, когда пытались сделать транзистор…

          То есть сейчас — когда и материалы вроде можно купить и приборы есть — а вот поди ж ты!
          Транзистор — задача на порядок сложнее радиолампы.

          >>Механические вычислители типа железного феликса - разумный максимум

          Это конкретный тупик. Хотя в некоторых узких нишах употребим.

            • А я знал, знал что дойдет до атомных реакторов! 😀
              Итого — всего две технологии: выращивание сверхчистого монокристалла кремния и построение реактора с дозированным производством нейтронов.
              Лементарно! 😀

              • Не с дозированным а с постоянным 🙂 это немного другая и намного более простая задача.
                Кстати, реактор делать необязательно, можно сделать генератор нейтронов типа того который используется как нейтронный детонатор для плутониевых бомб.

                • Налицо полное непонимание принципов и количественных характеристик.

                  В бомбах нужна точность по времени, единовременный вброс с бетатронного источника 10Е5-10Е6 нейтронов — вполне достаточно. Главное — точность.

                  Но 10Е6 нейтронов в масштабах числа Авогадро (6Е23) — ничто.

                • Да ладно?! 🙂 Это, видимо, так творчески переосмыслен принцип действия ускорительных источников?

                  Не, принципиально разломать дейтерий можно, только для этого нужна энергия порядка десятка МэВ (электронно-лучевую трубку этими 10 мегавольтами запитывать — прикиньте сами), да только в силу отношения сечения этой реакции к сечению банальной ионизации, выход нейтронов будет исчисляться в штуках в секунду на киловатт.

                  Да, есть _подобные_ источники с бериллием. Но выход нейтронов там — миллионы в секунду (энергии электронов — примерно те, МэВы), и бериллий тут именно потому, что распад бериллия — экзотермичен, нужно только чуть вложиться, а дальше — оно само. Это радикально снижает требования к ускорителю.

                  Наиболее «продуктивны» ускорительные тритиевые источники — тритий ускоряется в дейтериевую мишень (до 10Е14 нейтронов за импульс с ресурсом в сотни тысяч-миллионы импульсов). То есть, просто нормальный тритиевый термояд (ессно, вырабатывать так не выйдет, но тут ценно то, что она тратится не так быстро и не так много).
                  Напряжения там требуются — десятки-сотни кВ, что уже более приемлимо (нужно только инициировать реакцию, а не откалывать нейтрон, кэВы на ядро, а не МэВы).

                  Если без трития, то по порядку выхода нейтронов: дейтериевые с комбинированым магнитно-инерциальным удержанием (фузор с катушками) — до 10Е11 нейтронов за импульс, инерциально-статическим (классический фузор) — до 10Е9, дейтериевые с холодной мишенью — до 10Е10, но расход энергии повыше, конечно.

                  Всё это — абсолютный хайтек, все цифры — достижения современной науки и техники (в частности, БП там — передний край электроники).

                  Наиболее простой и доступный интенсивный источник — какой-нить активный альфа-изотоп типа радия-226 в смеси с бериллием (металл или оксид). Калифорниевые или полониевые лабораторные источники дают до миллиона нейтронов в секунду.
                  Радиевый даст меньше, но это ЕДИНСТВЕННЫЙ реальный способ получить хоть сколь-нить значимое количество нейтронов.

                  А теперь вспомним число Авогадро: каждые 28 грамм кремния содержат 600 000 000 000 000 000 000 000 атомов. На каждые несколько сотен-тысяч атомов кремния нужно обеспечить атомом примеси.

                  Ядерное легирование без ПРОМЫШЛЕНЫХ, многомегаваттного уровня ядерных реакторов (причём, с заметным запасом реактивности) — это даже не бред, это безграмотная чушь, уж простите.

                  • Да, без атомного реактора похоже не получится.

                    При количестве фосфора 10^13 на см3 его проводимость только-только сравняется с собственной проводимостю кремния. На деле надо, видимо, порядка 10^17, у меня откуда то засела оценка порядка миллионов, про относительно низкую производительность источников и число Авогадро я то помнил. Но для начала 20 века и с реактором сгодится.

                    • Тут ещё не всякий реактор подойдёт. Например, плотность нейтронного потока в РБМК (в котором в России хотели как раз заниматься ядерным легированием) — порядка 4Е13 нейтронов/см2*с
                      Ессно, что оттуда отбирать можно только несколько процентов, иначе реактор встанет.

                      Если принять за целевой показатель 10Е17, то получается, нужно 10Е5-10Е6 секунд на достижение концентрации — дни-недели.

                      И это один из самых мощных/дешевых источников нейтронов, доступных нынче людям. Канду — запас реактивности меньше, а корпусные всех видов принципиально не подходят из-за необходимости остановки реактора на смену мишени…
                      Остаются исследовательские/медицинские, но там нейтроны уже куда как подороже…

                      >Но для начала 20 века и с реактором сгодится.

                      А ничего, что его впервые создали в 1946-м? То есть в середине века, а не в начале.

                • >Нейтронный генератор это тяжелая вода на которую направлена мощная электронная трубка.

                  Вода обогащается до тяжелой электролизом, электронные трубки в конце 19 века применялись(рентген).

                  Изотопное обогащение электролизом? Что серьёзно?

            • То что ты описал это какая то экзотика, возможно для сверхмощных приборов. Микросхемы легируют банальным методом ионной обработки в вакууме. Но, как я уже писал, с германием все намного проще — на предварительно легированный кристалл крадутся две таблетки индия и все это нагревается до его плавления. Таким способом промышленно изготавливали в свое время германиевые приборы.

              Ядерное легирование — всё-таки экзотика (тем более, что оно принципиально вносит только один тип примеси: фосфор). Обычно всё-таки банальная диффузия и ионная имплантация.

          • Это вовсе не тупик, просто понимание принципов действия по настоящему наступило, когда стили доступны электромеханическте реле и лампы. В их отсутствие механических вычислители позволяют решить ряд очень важных в практической плане задач. К примеру, автоматического слежение за целью в корабельных артустановках. Вводятся курсы и скорости собственного корабля и цели, после чего вычислитель самостоятельно управляет поворотными и наклонными механизмами башни.
            Так что максимализм тут неуместен

            • Упс, про этот род задач я подзабыл 🙂
              Действительно в области простой автоматики механика вполне рулит…

              Механический баллистический вычислитель на флоте дает ОГРОМНОЕ преимущество

              • Не только баллистический вычислитель — задач куча. Просто сейчас они решаются копеечными микроконтроллерами и никто даже не задумывается об этом. То же управление сложными станками из этой области, к примеру. Или классика жанра — управление ткацкой машиной.

            >>>Транзисторы, конечно, куда лучше чем лампы.

            Не всегда, в условиях высокой радиации или больших температур транзисторы просто не работают, а лампы чуствуют себя вполне сносно… Современные лампы естественно…

            Ну и выпрямление больших токов это по прежнему безраздельная вотчина электронных ламп…

            А миниатюрность для ламп тоже не проблема — планарные лампы можно делать практически настолько маленькими, что им не требуется вакуум… 🙂

            • Каким образом в вашем ответе «транзисторы не всегда лучше» трансформировалось в «лучше без транзисторов»?
              Понятно, что есть узкие ниши — ну так в таких нишах кое-где еще и паровозы зравствуют.

              • Вот что то не заметил чтобы у меня было написано «лучше без транзисторов»…

                Тем не менее лампы можно делать хоть в средние века, с массой гимора само собой, но можно, а вот транзисторы увы никак…

                \\Понятно, что есть узкие ниши - ну так в таких нишах кое-где еще и паровозы зравствуют.\\
                НЧ усилки на ламах, были есть и будут, лучше транзисторных. Лампа не рубит края синусоиды — звук бархатный.

        • Вот как раз с надежностью у механики все хорошо. Поинтересуйся корабельными механическими вычислит елями — удивительные конструкции.

          >>>Лампы- тупик.

          Кто вам такое сказал?

          Другой вопрос что мало кто про это знает…

          Лампы отнюдь не тупик, просто вам неизвестно что развитие ламп не завершилось с появлением транзисторов… 🙂

          А там много что еще нового изобрели…

          Например лампы без накала…

          И лампы без вакума… 🙂

          И микросхемы на лампах… 🙂

          Если интересно — погуглите

          • >И микросхемы на лампах…

            Если интересно - погуглите

            • >>>При том, что до сих пор не могут изготовить больше, чем две лампы с близкими харатеристиками. Харатеристики же транзисторов были стабильны ещё в прошлом веке. Так где ниже требования к точности? В случае одного простенького усилителя стабильность характеристик не критична, можно настроить. И тогда да, проще лампа. И требования к точности ниже у лампы. А в сложных устройствах она критична, вплоть до условия работоспособности. И вот здесь то даже современная промышленность не «тянет».

              Тут речь о других лампах, да и назначение иное…

              Для цифровой техники точность аналоговых параметров не особо важна, но если учесть что таки лампы делаются технологии схожей с той, что и транзисторы, то разброс параметров примерно одинаковый…

              Если интересно про это есть вот в этой книге:

              Настоящая книга хотя и посвящена такой специальной области техники, как электронные вакуумные лампы, тем не менее является научно-популярной. В доступной и увлекательной форме рассмотрены классификация электронных приборов, их история и эволюция, место электронных вакуумных ламп среди других приборов, их роль в развитии цивилизации, попытки гибридизации вакуумных и полупроводниковых либо вакуумных и газоразрядных приборов. Рассказано о принципах работы, конструкции и технологии сеточных ламп, клистронов, ламп бегущей волны, магнетронов и вообще приборов М-типа, о гиротроне, оротроне, виркаторе, проблемах увеличения мощности, частоты и КПД. Отдельно и более подробно рассмотрены проблемы источников электронов для приборов - термоэлектронных, вторично-электронных и иных катодов, а также антиэмитгеров, принципы конструирования и работы композиционных материалов. Книга адресована широкому кругу читателей, интересующихся техникой и ее историей. Немало полезного в ней найдут инженеры, специализирующиеся в области электроники, преподаватели и студенты технических вузов.

      • >Булева алгебра, будучи очень простым и понятным разделом математики, оформилась только к концу 19 века, хотя могла существовать и в древней Греции

        При ручных логических выкладках как раз проще не пытаться их математизировать. Булева алгебра могла быть создана хоть в древнем Египте, но по-настоящему может быть распространена только при наличии устройств для автоматических вычислений. Не управлявшихся всё таки вручную арифмометров, а именно автоматических вычислительных устройств. Мало того, до двоичных процессоров даже трёхзначная логика имеет больше шансов, так как не всегда известны все величины.

    А какие требования к металлу электродов? Насколько я помню у разных металлов эмиссия электронов идет по разному.

    И ктото обещfл рассмотреть керамические и металлические корпуса для электронных ламп. Чтоб не возиться с впаиванием электродов в стекло. 🙂

    • Электроды обыкновенные, кроме катода, который выбрасывает электроны.
      Тут вопрос именно в температуре эмиссии. Поначалу можно просто вольфрам, но у него эмиссия при температуре за 2 тыс. градусов.
      Ну а дальше — соли редкоземельных элементов, я еще буду описывать.

      Ну и про корпуса — да, поначалу можно и металлокерамику (с чистой керамикой возни будет не меньше, если вообще возможно).
      Но у стеклянных корпусов много плюсов, к тому же они много технологичнее. С впаиванием электродов проблем, как раз нет, просто электроды нужно делать из
      Это опять тема и опять буду еще писать.

      • А еще в туду торий пихали, который за счет радиоактивности давал электронное облако. Интересно, если что-то злобное напихать в катод, можно ли забабахать лампу без подогрева катода? Преимущества существенные — в эру ламповой техники наверняка очень бы хотелось такое, а раз не сделали — значит непреодолимая проблема. Кто в курсе — где и в чем?

        • Чистые бета-излучатели (никель-59 точно, про стронций-90 — слышал, но не видел) кое-где с этой целью использовали.
          «Преимущества» там сомнительные: уж очень большая энергия электронов, там не «облако», там «брызги», летящие с ОЧЕНЬ большой энергией постоянно во все стороны, что даёт «нулевой ток» и серьёзный шум. Даже обратным смещением это не лечится: очень велики энергии электронов.
          Кое-где имеет смысл (некоторые газоразрядные приборы, ионные лампы, особые лампы для стохастических усилителей), но в целом — не, бяка.

          Есть другая технология. И очень попаданская по сути.

          Лампы без подогрева катода делаются (в смысле, и сейчас делаются, для военки) на автоэмиссии, и это (с терморасширенным графитом). Вполне попаданская техника, технологически проще интеркалировать графит (даже чистота не критична), чем ваять цезиевый или бариевый электрод с подогревом.
          Но там свои замороки: высокое напряжение обязательно (от киловольт), относительно малая плотность эмиссионного тока.
          У усилительного триода будет слишком нелинейная ВАХ на начальном участке, для магнетрона — реально достижимые токи маловаты.

          Схемотехнику нужно будет строить несколько иначе.
          У технологии есть свои очень удобные ниши: классическая ЭЛТ, кинескоп с этой технологией значительно выигрывают. Старт мгновенный, потребление меньше, ресурс выше.
          Если рассматривать попаданство куда-то типа СССР 40-х — 50-х, то ламповая схемотехника и радиотехника вообще развивались бы иначе. Скажем, автоэмиссионные лампы — вполне реальная энергосберегающая альтернатива ртутным, и по цене сравнимой с лампами накаливания. Технология могла бы стартовать в те же 50-е, когда электричество было очень дорогим, и ртути просто не было бы ниши для появления.
          По эффективности технологии сравнимы, но катодные лампы (сами лампы) проще, дешевле, менее зависят от температуры и мгновенно включаются.

          Кроме того, развитие принципа могло бы привести к ламповым микросборкам, сравнимым с первыми гибридными ПП-микросхемами, конкуренция с полупроводниками была бы куда более жёсткой.

          В общем-то, эта технология могла бы куда шире отыграть чем в реальном мире, стартуй она хотя б на 20 лет раньше — пока не решилась проблема синего светодиода. Сейчас, наверное, уже поздновато.

          • Вполне любопытно. Интеркаляция тем же цезием или чем попроще можно? Тем же калием/барием?
            Трансформатор для ламп не дороговат ли выйдет, учитывая всего 50гц? Моргать не будет?

            Особливо у ЭЛТ ток стабильный будет с таким катодом? Почему в тех же электронных микроскопах сейчас не применяют, и вообще обычно греют?

            З.Ы. ДРЛки жалко — сколько из них на коленке мастрячилось… 🙂

            • Там не цезий, интеркаляция нужна только чтобы «распушить» графит на графеновые листы (серная кислота — обычный метод терморасширения).
              Из графеновых листов получаются своего рода «атомарные иголки», с _очень_ высокой напряжённостью поля на концах при приемлимом напряжении. Альтернативные электроды для автоэмиссии долгое время пытались растить из кремниевых нанопроволок, из цезиевых, из оксида олова и даже ставить пучки нанотрубок. Кое-что получается приемлимо, но ни одна альтернатива не приближается по характеристикам и их стабильности к графиту/графену.
              А технологически там просто пропасть: золото и цезий — это CWD, кремниевые нанопроволоки — аж литография + травление.

              Трансформатор — да, дороговат. Но ДРЛ тоже железа и меди в ПРА требует + фигнюшки в виде стартера.
              Моргать будет ровно настолько, насколько позволит люминофор. А между нами, девочками, сделать инерционный люминофор много проще, чем «моргающий» (то есть, быстрый): первые катодолюминофоры именно таковыми и были. Помните осциллографы для медленных процессов, где луч бежал чуть ли не полсекунды по экрану, а его путь запоминался долго высвечивающим люминофором? Это вовсе не беда. Тем более, что можно и сглаживать конденсатором. ЭЛТ — это диод.

              Это относительно недавняя технология — этот нанотех (без кавычек) раньше просто никому не приходил в голову. Да, пробовали делать острые катоды, но что такое «острый» по сравнению с атомной плоскостью? Даже графен и нанотрубки имеют вовсе не запредельные эмиссионные характеристики, даже при высоком напряжении.
              И электрод должен иметь ещё и ресурс, плотность тока там на острие дикая, чуть переборщил — и взрывная эмиссия. То есть, нужен именно лес атомно-острых электродов, простых в производстве, дико проводящих (да-да, поэтому графен рулит)… До определенного момента никому в голову не приходило, КАК такое ВООБЩЕ сделать?!
              Люди же не зря в 90-е тыкались с этой целью в кремниевые нанопроволоки (тогда автоэмиссионные экраны рассматривали как «плоскую» замену ЭЛТ). Не знали о нанотрубках, не знали о графене, анизотропную работу выхода считать вообще не умели (я не говорю, что сейчас хорошо умеют:)).

              Поэтому это истинно попаданская технология: за кажущейся простотой стоят знания и мысли, которые добыты на другом, высшем технологическом витке.

              Не применяется сейчас банально из-за инерции. Ну и плотность тока с нагретых катодов выше, линейность характеристик, отработаная, предсказуемая технология, совместимость с малыми напряжениями… у автокатодов тоже есть неудобства.
              Но главная причина: всё-таки электронно-лучевые приборы сейчас слишком малосерийны, чтобы вести НИОКР по улучшению их второстепенных характеристик. Там, где денег много и характеристики важны (вояки + ЛБВ, скажем), там внедряется(-лось).
              Но лампам даже у вояк и даже в СВЧ сейчас всё меньше места.

              • Насчёт медленного люминофора с хорошим квантовым выходом есть сомнения. И насыщаются оне соответственно, порядка эдак на 4 легче…
                Иначе б все газоразрядные лампы на них делали, и не ломали глаза на 50гц моргании.

                Насчёт конденсатора — не уверен… Графеновая шуба наверняка живёт своей жизнью, и при том же потенциале ток будет плясать. Впрочем, для лампочки может и не существенно.

                А вот трансформатор на киловольты и 50гц — это не только дорого, но и громоздко. Т.е. или импульсник какой мастрячить, или ещё чего… А с элементной базой — плохо!

                Т.е. технология интересная, но вопросы остаюццо.

                • Никаких сомнений: у меня диплом был по запасающим. Вопросы катодных тоже затрагивались. 🙂
                  На насыщение выйти? Мнэ… даже в классическом кинескопе, где площадь пятна под лучом меньше десятых квадратного миллиметра а мощность — десятки Вт (прикиньте плотность мощности:)), до такого ещё пилить и пилить. Да, деградация при этом знатная, да КПД падает (из-за нагрева), но чтоб выйти на насыщение, нужно очень хорошо поработать.
                  Самый классический сульфид цинка, известный чуть ли не с первых дней катодных лучей до сих пор один из рекордсменов по квантовому выходу. И да, он обычно очень медленный (он может стать относительно быстрым, но это требует запредельной технологии — дело в кислороде). Есть, есть нюансы (излучающих центров-то много, ловушек тоже много разных), но если не копать глубоко, чисто практически — всё ОК.

                  Газоразрядные — это, вообще говоря, иное. То есть, определенное сходство и пересечение есть, но возбуждение УФ имеет свою специфику, быстрые электроны — свою. И не знаю уж, что за лампами Вы пользуетесь, на 100Гц моргании глаза давно никто не ломает. Как только это стало хоть сколь-нить важным для потребителей — и добавили инерции, и спектр выправили. Совсем избавиться нельзя, там в большинстве процессов экспонента, а как её ни поворачивай, в самом начале она очень уж крута, ничего с этим не сделать.

                  Там не такая уж и интенсивная интимная жизнь у того графена. Конденсатор помогает.

                  Трансформатор — да, дорого, да, громоздко. Можно разводить высокие вольты, что тоже не очень заманивает.
                  Но у всех источников света свои замороки (ха! будто с ДРЛ или ДНаТ просто было!). В импульсник (достаточно дешевый), кстати, уткнулись ребята, которые сейчас в России эту технологию пытаются продвинуть на рынок как альтернативу ртутным энергосберегайкам. Есть такая группа, знаю людей.

                  Вопросы есть, не без того, да. Тем более, что сейчас есть масса альтернатив.
                  Но какая технология без вопросов? И даже если технология не всеобъемлюща, есть ниши и времена, где она садится намертво, как влитая.

                  • \\В импульсник (достаточно дешевый), кстати, уткнулись ребята, которые сейчас в России эту технологию пытаются продвинуть на рынок как альтернативу ртутным энергосберегайкам. \\

                    Это он СЕЙЧАС дешёвый. А в 50х…

                    \\Как только это стало хоть сколь-нить важным для потребителей - и добавили инерции, и спектр выправили. Совсем избавиться нельзя, там в большинстве процессов экспонента, а как её ни поворачивай, в самом начале она очень уж крута, ничего с этим не сделать.\\

                    Можно питалово выпрямить. Но — да, экспонента, и хорошо её гасить — релаксация в секунды нужна. Такой инерции никто добавить не смог.

                    По насыщению — та же песня. Если вместо микросекунд — секунды, то считать уже надо. Может для электронов это и не важно, но в флуоресценции затык перманентный.

                    И ещё момент: электроны, они сцуки и рентген дадут, пусть мягкий. Т.е. тоненькое стёклышко не поставишь…

                    • В 50-х — только централизованое питание высоким током. Но беды тут не вижу: в сети переменного тока на ЖД у нас 30кВ, и ничего, как-то живёт. Почему бы в осветительной сети к городскому освещению не протянуть бы высокое? Да, изоляция дороже. Зато проводки тоненькие. 🙂

                      Питалово у ртутных выпрямить как раз нельзя: ассиметричный износ электродов будет. Можно увеличить частоту, как в современных ПРА (хотя, ПРА уже ли это? там даже яркость плавно регулируется, и поджиг высоким бывает).

                      С рентгеном интересно: есть две компоненты — характеристический (тут всё просто — не пихай под луч материалы с жёсткой К-линией, и всё будет ОК) и нормальное тормозное (тут, НЯП, что-то типа четвертой степени эффективного Z материалов). То есть, ежели под лучом алюминий (1.5кэВа характеристическое) и алюмогранаты (алюминий и кислород, эффективное Z где-то там у плинтуса), то рентген через тоненькое стёклышко не пройдёт. Разве что МэВами долбить, но это неудобно по другой причине. 🙂
                      Стёклышко может быть и свинцовым (для уличного освещения выгоднее брать высокие напруги), это не такая беда. В конце-то концов, жёсткий УФ из ДРЛ тоже беда та ещё, и двойная колба — не помеха для применения.

                      То есть, эти проблемы скорее умозрительные даже для нас с Вами.
                      В СССР 50-х, где гамма-реле могли ставить как датчик загруза бункера или для перевода стрелки трамвая (ага, вот так жёстко, никто не говорил, что в сказке живём) вопрос бы даже не поднимался.

                      Киловольты на фонарях? Ой какая жизнь интересная настанет, особенно у подростков:). Но, естественный отбор — это хорошо! 🙂

                      Питалово выпрямить можно (и нужно). Сгорела одна спираль — перевернул лампу, работает дальше. Ресурс почти вдвое выше!

                      Рентген — для мощных уличных фонарей с тяжёлой и дорогой колбой — да, нормально и незаметно. Для помещений, аналоги 40-60Вт накаливания — не надо. Не под это технология заточена.

                      Гамма-реле и т.д… Ну вот уринотерапией тоже занимаются, но это же не значит, что так надо делать:).

                  • И ещё — такие катоды доводить — по любому SEM нужен. В 50х это напряг.

                    Кстати, одна из вполне попаданческих технологий — АFM. Практической пользы не будет, но Нобелевку где-нить в 60х — легко.

                    • Нет. 🙂 SEM нужен не по-любому, а по-хорошему. 🙂
                      В принципе, после указания приблизительной области оптимума системно применяемый метод тыка даёт превосходные результаты.

                      Подход был другой, более практичный. 3 неизвестно как влияющих параметра? Десять вариаций по каждому по логарифмической шкале, тыща образцов… Делаем, измеряем, смотрим тенденции и области подозрительные на оптимум. Ещё тыща образцов — уточняем. Это даже не НИОКР, а так — тема для аспиранта.

                      ИМХО, попаданчество на сроки менее 50 лет — это уже не совсем попаданчество и прогрессорство. 🙂
                      Тут чем меньше срок заброса, тем ближе к «чтоб я был таким умным вчера, как моя теща завтра»…

                      Ну, в принципе всё так. Имея десяток статей в смартфоне — можно и без SEMу…

                      А про «50 лет» — так тут обычно до ВВ2 и не обсуждают:). Отчасти ещё и потому, что чем ближе — тем легче продемонстрировать незнание предмета;).

                      Думаю всеже сроки менее 50 лет не обсуждают по другой причине 🙂
                      Тут не сколько незнание сколько отсутствие по настоящему глобальных идей опередивших время которые может внедрить один эрудированный человек. Требуется огромная работа желательно мощного коллектива.
                      Например те же транзисторы или микросхемы: достаточно изложить общие принципы тому же Лосеву или Йофе и дело закрутится, но без вас.
                      Вспомнить что арсенид галлия используется в светодиодах можно, но не факт что это сразу даст результат, потребуется экспериментальный поиск, так что нобелевку получит тот, кто на основе этой подсказки сварганит сверхъяркие светодиоды.
                      А вот точные рецептуры уж больно конкретные, их из литературы не почерпнешь, только если долго этим сам на практике занимался. Тут вопрос в чем спец наш попаданец. Старший научный сотрудник из лаборатории полупроводников может весьма сильно продвинуть радиотехнику в СССР 30х-50х, специалист по синтезу полимеров сделает аналогичные прорывы в химии но вот в областях друг друга они почти ничем помочь не смогут.
                      В последние 50 лет наука стала намного менее глобальна и цена узкого специалиста возросла. Попаданец в это время может подкинуть несколько конкретных технических решений с которыми он знаком, может подтолкнуть науку на общее выгодное направление — электроника-компьютеры и генетика-ГМО-биотехнологии, но не более того.
                      А конкретные рецепты, они уж больно узкую вилку применения имеют.
                      Например есть несколько конкретных усовершенствований которым можно подвергнуть танк Т-34 в 40-42 годах. Раньше этого танка не было позже их сами придумали. Усовершенствования существенно повышают качество танка и снижают трудоемкость его изготовления.
                      Но как уже сказано они годятся только для 40-42 года. Ну и какой толк их обсуждать?

                      И кстати, да, пример с диодами — отличный. Про то, что арсенид галлия рулит знали с самого начала, заставить его светиться для индикаторных целей тоже смогли почти сразу. Но вот сверхъяркие СИНИЕ диоды — это такая история, про которую можно целый эпос написать. Или снять голливудский фильм когда гений работает-работает-работает, испытывая трудности, все ему не верят, жена бросает, он уже отчаивается, но постигает Восточную Мудрость и работает-работает-работает снова.
                      И в конце — абсолютная победа: синий диод (конкурс парикхмахеров выигран, сделка состоялась, первое место на олимпиаде и т.п).

                      Чтобы повторить такое на 20 лет раньше, нужно всё равно быть Накамурой или где-то около того.

                      //Чтобы повторить такое на 20 лет раньше, нужно всё равно быть Накамурой или где-то около того.
                      Ну или в точности знать секрет и уметь его повторять в лабораторных условиях в силу своей профессии.

                      Кстати, есть еще один момент: планер, паровую машину, воздушный шар- их может построить один человек. Разумеется при наличии материалов и местных работников которым можно поручить вырезать нужные детали.
                      А вот Су-27 или Т-90 во времена ВОВ один человек НИКАК сделать не сможет. Даже при наличии любых помощников! И Т-72 не сделает. И даже Т-55. Придется ему ограничится усовершенствованиями Т-34 или, в крайнем случае, при очень хорошем знании истории танкостроения, замутить разработку Т-44.
                      Опять же ни «Конкурс» ни «Метис» одному человеку не осилить, и даже РПГ-7 не повторить, придется ограничится организацией разработки помеси РПГ-2 и РПГ-7, тут уж что получится.
                      Заметьте, тут речь именно об организации разработки а не об непосредственном изготовлении. Даже ППС-43 изготовить не удастся. Вернее один экземпляр может и получится замутить, но секрет ППС-43 не в боевых а в технологических характеристиках, нужно знать КАК его дешево и быстро производить а не то как он устроен.

                      Паровую машину из списка вычеркните, одному не построить.

                      Это не «или». Тут как раз дело не в том, чтобы знать некий один «секрет» (ну вот как со светодиодами — использовать твердый раствор нитрида галлия). Нужно точно знать именно всю совокупность технологий — выращивание гетероструктур, например, за неё Алфёров свою Нобелевку не зря получил, это не идея, это технология.

                      То есть, да, человек должен именно работать в этой самой области, и именно над этим самым предметом. Общей эрудиции и даже курса физики полупроводников не хватит.

                    \\сейчас в России эту технологию пытаются продвинуть на рынок как альтернативу ртутным энергосберегайкам\\ Оффтоп, но онанизмом они занимаются. При нынешних светодиодах-то…

                    • Стартовали они лет пять назад, расклады были иные… Засели в типичной «долине смерти» для стартапов.

                      Резон был, и какой-то всё ещё есть.
                      — катодные лампы экономичнее энергосберегаек и где-то на уровне «длинных» ламп.
                      — катодные лампы дёшевы, и они могут выпускаться на том же самом производстве, что и лампы накаливания. Не без вмешательства в процесс 🙂 , но альтернатива — полное закрытие заводов. Они реально дёшевы. Без БП — на уровне ЛН.
                      — в катодных лампах нет ртути. Это на самом деле очень сильный аргумент если не для потребителей, то для людей на отвественных постах в государстве. Реально все ртутные лампы идут не на пункты сбора, а просто на свалку, а рассеяная около мест обитания ртуть — это не то, что на самом деле нужно людям.

                      Светодиоды сейчас очень хороши, но в массовых мощных лампах они только-только подтягиваются к 100Лм/Вт, то есть, только сейчас они _начали_ обгонять «длинные» ртутные трубки, для которых 80-90Лм/Вт — сейчас уже норма. При несравнимой цене за люмен.
                      Катодные лампы на самом деле убийцы ртути. Не светодиодов — те слишком хороши. И слишком дОроги. 🙂

                      Даже 5 лет назад было ясно, что ртутные — устаревают. Сейчас — тем более. Цены на светодиоды уже сравнимы, и будут падать до абсолютных копеек.

                      Насчёт же экологичности — рентген. Не важно, насколько он реально плох — сам факт наличия не даст получить «зелёные» плюшки.
                      В общем, перспективы нулевые с самого начала, разве что денежек на стартапы отъесть, пока давали…

            • В принципе, углеродные катоды тоже можно (и наверное, нужно) чуток греть. Получим выше плотность эмиссии, линейность и всякие прочие прелести обычных термоэмиссионных электродов.

              Углерод всё равно лучше цезия. При всей дешевизне работа выхода у правильных углеродных катодов сравнима с лучшими цезиевыми катодами при бОльшем ресурсе, стабильности характеристик и даже плотности тока.
              То есть, при той же температуре такой углерод лучше. Цезий/барий в большинстве случаев не нужны (только для ФЭП, динатронов и им подобных), ИМХО, это путь в обход идеала, каприз технической истории Человечества, который не нужно было б повторять.

              • Впрочем, нет. Графит наверняка не выдержит и нагрева, и больших токов…

                • Про графит статью нужно писать отдельно. Там были приключения с добычей, когда шахту открывали на несколько месяцев раз в семь лет (точные цифры не помню, надо нарыть).

                  И графит — не для электродов электронных ламп (не верю в это), а для электродов электролизеров (тот же алюминий из расплава), для для муфельных печей, для щеток генераторов. Ну и бытовуха разная, карандаш наше всё.

                  Ну а про графен — вообще чистая фантастика, ИМХО.

                  • Что значит «не верю»? 🙂
                    А в вольфрам и цезий — веруете, сталыть? Сталыть, канонически, без апокрифов и ентих новых нехристей? 🙂

                    Это физика и техника. Ладно б, это была абстрактная теорфизика, но это реально существующая техника. Фантастика, не фантастика… работает.
                    Собссно, с листами чистого графена там никто дела и не имеет, если смотреть под электронным микроскопом, это всё выглядит весьма неопрятно. Но конечный результат всех устраивает, а это главное, верно?

                    А Вы полагаете, что сейчас технический графит именно добывают в шахтах, что ли? 🙂 Нет. Там, где нужны контролируемые свойства, он пиролизный.

                    • Давайте ссылочку с деталями как оно там работает.
                      Если действительно вменяемо с точки зрения древности — соберу статью.

                      А то вот вчера про бариевые магниты писал, были тут утверждения что оно несложно…

                      Ащё — сцылки на портируемую в древность технологию пиролизного графита — приветствуются.

                      Эти схемы это просто демонстрация характеристик лампы и не более того… для работы лампового генратора, даже самого простейшего нужно усложнить схему… например добавить коллебытельный контур и обратную связь что бы генератор не самовозбуждался… нужна будет точная стабилизация рабочей точки в схеме вч… малореализуемо…

                      Нужна практическая схема, работающая… посмотрите журналы по ссылке выше, там много схем простайших ламповых устройств, которые реально будут работать…
                      Отдельное вниание изготовлению детектора, и детекторным парам…

                      Вот про искровой передатчик: http://sergeyhry.narod.ru/rv/rv1926_03_08.htm , такой реально сделать самому имея медь и железо…. батарею медь, цинк, медный купорос или соль. или ваш столб или банка…

                      «Радио Всем», №7, апрель 1928 год Статья Всё о регенераторах А то ведь сдвинули на полмиллиметра стержни сетки в одну сторону а анодный стержань в другую и вольтамперная характеристика девайса стала ну совсем уж уникальной, н на одну другую лампу не похожа.

                      • 1) С точностью установки могут помочь стандартные изоляторы — пластинки сверху и снизу. Можно из горячего стекла штамповать или из керамики какой. Стального штампа на пару сотен хватит, потом еще один вырежем.
                        2) ВАХ и так и так от лампы к лампе плавать будет, так что от подстроечников никуда деться не получиться.

                        Сама конструкция стержневых ламп содержит 3 пластинки из слюды пробитые на автомате плюсом направляющие пистоны запрессованные в эту слюду (латунные к стати) сами стержни сеток симметричные и предварительно отформованные как и пластины первых сеток и анода(там лепестки для загиба или сварки) — так что ничего не сдвинешь — конструкция анодов не позволяет, но только ручная сборка под микроскопом (самое сложное установка и натяжение нити накала).

                  • Предлогаю открыть отдельное обсуждение темы о освещении в истории мира и о возможностях попаданца в его улучшении!

                    Приветствую! Видел на youtube видео с приборами без колбы, точностей не знаю, но похоже оно работает. Даже показан усилитель и генератор.
                    Катод такой лампы, будь то триод или диод греется горелкой. Сам пробовал делать диод, проводимость наблюдалась, дальше не проверял.
                    Пока успешно осваиваю промышленные лампы, но очень хочется сделать свою, для эксперимента.
                    Чем-то отдалённо напоминает один генератор, где пламя помещалось меж электродами и подвергалось действию сильного постоянного магнитного поля, возникал электрический ток. Названия не помню только.
                    Создатели сайта молодцы, очень интересный ресурс!

                    Неплохо было бы еще рассказать о газонаполненных лампах (тиратронах, например), которые не требуют вакуума. С аналоговыми сигналами у них не очень, но вот, например, генератор-мультивибратор или выпрямитель для переменного тока можно легко сделать. Ну и довольно навороченные цифро-аналоговые девайсы, вроде логических элементов (системы управления и контроля, сумматоры там разные для простейших вычислений), реле времени и так далее.

                    • Небольшое количество галогенных газов можно легко выделить при успешном химическом производстве. А ртутные пары даже в мощных тиратронах используются для атомных бомб. 🙂

                    >>>>Лампы- тупик.

                    Кто вам такое сказал?

                    Они по прежнему используются и мало того развиваются, а не так давно перешагнули 100 нанометровый рубеж…

                    Микролампы? А это не извращение?

                    >Вот как раз науку двинуть будет самое легкое - там есть инертность мышления, но она все же меньше, чем в промышленности, потому как в науке всегда можно найти молодых ученых, а среди промышленников молодежи не бывает.

                    И это я взял пример того, кто создал своё состояние сам. А унаследовать завод можно и в три, и даже в грудном возрасте.

                    >выпрямляющий контакт. Комбинируя, можно ХОТЬ САМИМ клепать диоды, полевые транзисторы, тиристоры и первые примитивные микросхемы. Практически на коленках, ага… Cильно сложно?

                    Что серьзно? Ядерный реактор на коленке? А ни как проще себе и окружающим проблем нельзя создать?

                    В этой статье Nyle Steiner описывает эксперименты по электропроводности пламени спиртовки. http://www.sparkbangbuzz.com/flame-amp/flameamp.htm
                    Ему удалось построить действующий «пламенный» (аналогичный вакуумному)триод. А также используя двойной «пламенный» собрать мультивибратор.

                    • Забавно… вполне попаданческий подход))

Как расшифровываются обозначения ламп, как образуются названия ламп, какая разница между многосеточными и многоэлектродными лампами, как выведены электроды у приёмных ламп и т.п.

Как расшифровываются обозначения ламп?

Приёмные лампы, выпускаемые заводом “Светлана”, обычно обозначаются двумя буквами и цифрой. Первая буква указывает назначение лампы, вторая - род катода, а цифра - порядковый номер разработки лампы.

Буквы расшифровываются так:

  • У - усилительная,
  • П - приёмная,
  • Т - трансляционная,
  • Г - генераторная,
  • Ж - маломощная генераторная (старое название),
  • М - модуляторная,
  • Б - мощная генераторная (старое название)
  • К - кенотрон,
  • В - выпрямительная,
  • С - специальная.

Род катода указывают следующие буквы:

  • Т - торированный,
  • О - оксидированный,
  • К - карбонированный,
  • Б - бариевый.

Таким образом СО-124 означает: специальная оксидная № 124.

В генераторных лампах цифра, стоящая при букве Г, указывает полезную отдаваемую мощность лампы, при чём для маломощных ламп (с естественным охлаждением) эта мощность указана в ваттах, а для ламп с водяным охлаждением - в киловаттах.

Что обозначают буквы “С” и “РЛ” на баллонах наших радиоламп?

Буква “С” в кружке марка ленинградского завода “Светлана”, “РЛ” - московского завода “Радиолампа”.

Как образуются названия ламп?

Все современные радиолампы можно разделить на две категории: лампы одинарные, имеющие в своем баллоне одну лампу, и лампы комбинированные, представляющие собой сочетание двух или нескольких ламп, имеющих иногда один (общий), а иногда несколько самостоятельных катодов.

Для ламп первого типа существуют два способа составления названий. Названия, составляемые по первому способу, указывают количество сеток, при чём число сеток указывается греческим словом, а сетка - английским (грид).

Таким образом, по этому способу пятисеточная лампа будет называться “пентагрид”. По второму способу в названии указывается количество электродов, из которых один является катодом, другой анодом, а все остальные сетками.

Лампа, имеющая всего два электрода (анод и катод), называется диодом, трёхэлектродная - триодом, четырёхэлектродная -тетродом, пятиэлектродная - пентодом, шестиэлектродная - гексодом, семиэлектродная - гептодом, восьмиэлектродная - октодом.

Таким образом лампа, имеющая семь электродов (анод, катод и пять сеток), по одному способу может быть названа пентагридом, по другому - гептодом.

Комбинированные лампы имеют названия, указывающие типы заключённых в одном баллоне ламп, например: диод-пентод, диод-триод, двойной диод-триод (последнее название указывает, что в одном баллоне заключены две диодных лампы и одна триодная).

Какая разница между многосеточными и многоэлектродными лампами?

В последнее время в связи с выпуском ламп, имеющих много электродов, предложена следующая, не получившая пока ещё общего признания, классификация ламп.

Многосеточными лампами предложено называть такие лампы, у которых имеется один катод, один анод и несколько сеток. Многоэлектродными лампами такие, у которых имеется два или больше анодов. Многоэлектродной лампой будет называться и такая, у которой два или больше катодов.

Лампа экранированная, пентод, пентагрид, октод являются многосеточными, так как у каждой из них имеется по одному аноду и по одному катоду и соответственно две, три, пять и шесть сеток.

Такие же лампы, как двойной диод-триод, триод-пентод и т. д. считаются многоэлектродными, так как у двойного диода-триода имеется три анода, у триод-пентода - два анода и т. д.

Что такое лампа с переменной крутизной (“варимю”)?

Лампы, обладающие переменной крутизной, имеют ту отличительную особенность, что характеристика их при малых смещениях вблизи нуля обладает большой крутизной и коэффициент усиления при этом возрастает до максимума.

С увеличением отрицательного смещения, крутизна характеристики и коэффициент усиления лампы падают. Это свойство лампы с переменной крутизной позволяет применять её в каскаде усиления высокой частоты приёмника для автоматической регулировки силы приёма: при слабых сигналах (смещение мало) лампа усиливает максимально, при сильных сигналах усиление падает.

На рисунке слева приведена характеристика лампы с переменной крутизной 6SK7 и справа характеристика обычной лампы 6SJ7. Отличительная особенность лампы с переменной крутизной - длинный “хвост” в нижней части характеристики.

Рис. 1. Характеристика лампы с переменной крутизной 6SK7 и справа характеристика обычной лампы 6SJ7.

Что значит ДДТ и ДДП?

ДДТ является сокращённым названием двойного диода-триода, а ДДП - сокращённым названием двойного диода-пентода.

Выводы электродов у различных ламп показаны на рисунке. (Разметка штырьков дана так, как если бы на цоколь смотреть снизу).

Рис. 2. Как выведены электроды у приёмных ламп.

  • 1 - триод прямого накала;
  • 2 - экранированная лампа прямого накала;
  • 3 - двуханодный кенотрон;
  • 4 - пентод прямого накала;
  • 5 - триод косвенного накала;
  • 6 - экранированная лампа с косвенным накалом;
  • 7 - пентагрид прямого накала;
  • 8 -пентагрид косвенного накала;
  • 9 - двойной триод прямого накала;
  • 10 - двойной диод-триод прямого накала;
  • 11 - двойной диод-триод косвенного накала;
  • 12 - пентод с косвенным накалом;
  • 13 - двойной диод-пентод с косвенным накалом;
  • 14 - мощный триод;
  • 15 - мощный одноанодный кенотрон.

Что называется параметрами лампы?

Каждая электронная лампа обладает некоторыми отличительными особенностями, характеризующими её пригодность для работы в известных условиях, и усиление, которое эта лампа может дать.

Эти характерные для лампы данные называются её параметрами. К основным параметрам принадлежат: коэффициент усиления лампы, крутизна характеристики, внутреннее сопротивление, добротность, величина междуэлектродной ёмкости.

Что такое коэффициент усиления?

Коэффициент усиления (обозначаемый обычно греческой буквой |і) показывает, во сколько раз сильнее, по сравнению с действием анода, действие управляющей сетки на поток электронов, излучаемых нитью накала.

Общесоюзный стандарт 7768 определяет коэффициент усиления, как “параметр электронной лампы, выражающий отношение изменения анодного напряжения к соответствующему обратному изменению сеточного напряжения, необходимому для того, чтобы величина анодного тока оставалась постоянной”.

Что такое крутизна характеристики?

Крутизной характеристики называется отношение изменения анодного тока к соответствующему изменению напряжения управляющей сетки при постоянном напряжении на аноде.

Крутизна характеристики обозначается обычно буквой S и выражается в миллиамперах на вольт (мА/V). Крутизна характеристики является одним из самых важных параметров лампы. Можно считать, что чем крутизна больше, тем лампа лучше.

Что такое внутреннее сопротивление лампы?

Внутренним сопротивлением лампы называется отношение изменения анодного напряжения к соответствующему изменению анодного тока при постоянном напряжении на сетке. Обозначается внутреннее сопротивление буквой Ши выражается в омах.

Что такое добротность лампы?

Добротностью называется произведение коэффициента усиления на крутизну лампы, т. е. произведение і на S. Добротность обозначается буквой G. Добротность характеризует лампу в целом.

Чем добротность лампы больше, тем лампа лучше. Добротность выражается в милливаттах, делённых на вольты в квадрате (mW/V2).

Что такое внутреннее уравнение лампы?

Внутренним уравнением лампы (оно всегда равно 1) называется отношение крутизны характеристики S, помноженной на внутреннее сопротивление Ri и делённой на коэффициент усиления ц, т. е. S*Ri/ц=1.

Отсюда: S=ц/Ri, ц=S*Ri, Ri=ц/S.

Что такое междуэлектродная ёмкость?

Междуэлектродной ёмкостью называется электростатическая ёмкость, существующая между различными электродами лампы, например, между анодом и катодом, анодом и сеткой и т. д.

Наибольшее значение имеет величина ёмкости между анодом и управляющей сеткой (Cga), так как она ограничивает усиление, которое можно получить от лампы. В экранированных лампах, предназначенных для усиления высокой частоты, Cga измеряется обыкновенно сотыми или тысячными долями микромикрофарады.

Что такое входная ёмкость лампы?

Входной ёмкостью лампы (Cgf) называется ёмкость между управляющей сеткой и катодом. Эта ёмкость обычно присоединяется к ёмкости переменного конденсатора настраивающегося контура и уменьшает перекрытие контура.

Что такое мощность рассеяния на аноде?

Во время работы лампы к аноду её летит поток электронов. Удары электронов об анод вызывают нагревание последнего. Если рассеивать (выделять) на аноде большую мощность, то анод может расплавиться, что приведёт к гибели лампы.

Мощностью рассеяния на аноде называется та предельная мощность, на которую рассчитан анод данной лампы. Эта мощность численно равна анодному напряжению, помноженному на силу анодного тока, и выражается в ваттах.

Если, например, через лампу при анодном напряжении в 200 В протекает анодный ток в 20 мА, то на аноде рассеивается 200*0,02=4 Вт.

Как определить мощность рассеяния на аноде лампы?

Наибольшая мощность, которую можно рассеивать на аноде, обычно указывается в паспорте лампы. Зная мощность рассеяния и задавшись определённым анодным напряжением, можно рассчитать, какой предельный ток допустим для данной лампы.

Так, мощность рассеяния на аноде лампы УО-104 равна 10 Вт. Следовательно, при анодном напряжении в 250 В анодный ток лампы не должен превышать 40 мА, так как при таком напряжении на аноде будет рассеиваться как раз 10 Вт.

Почему раскаливается анод выходной лампы?

Анод выходной лампы раскаливается потому, что на нём выделяется большая мощность, чем та, на которую лампа рассчитана. Обычно это происходит в тех случаях, когда на анод подано высокое напряжение, а смещение, заданное на управляющую сетку, мало; в этом случае через лампу протекает большой анодный ток, и в результате мощность рассеивания превышает допустимую.

Для избежания этого явления нужно или снизить анодное напряжение или увеличить смещение на управляющей сетке. Точно так же, в лампе может раскаливаться не анод, а сетка.

Так, например, иногда в экранированных лампах и пентодах раскаливаются экранирующие сетки. Это может происходить как при слишком высоком анодном напряжении на этих лампах и при малом смещении на управляющих сетках, так и в тех случаях, когда вследствие какой-нибудь ошибки на анод лампы не попадает анодное напряжение.

В этих случаях значительная часть тока лампы устремляется через сетку и раскаляет её.

Почему в последнее время аноды ламп стали делать чёрными?

Чернение анодов ламп производится для лучшей теплоотдачи. На зачернённом аноде можно рассеивать большую мощность.

Как разобраться в показаниях приборов при испытании в магазине покупаемой радиолампы?

Испытательные установки, которые применяются в радиомагазинах при проверке покупаемых ламп, чрезвычайно примитивны и не дают действительного представления о годности лампы для работы.

Все эти установки чаще всего рассчитаны на проверку трёхэлектродных ламп. Экранированные лампы или высокочастотные пентоды проверяются в тех же панелях и потому приборы испытательной установки показывают ток не анода лампы, а ток экранирующей сетки, так как к анодному штырьку на цоколе таких ламп подведена экранирующая сетка.

Таким образом, если в лампе имеется замыкание между экранирующей сеткой и анодом, то на испытательной установке в магазине эта неисправность обнаружена не будет и лампа будет считаться годной. По этим приборам можно судить только о том, что нить накала цела и эмиссия имеется.

Может ли являться признаком годности лампы целость её нити накала?

Целость нити накала может считаться сравнительно верным признаком пригодности лампы для работы только применительно к лампам с чисто вольфрамовым катодом (к таким лампам относится, например, лампа Р-5, которая в настоящее время снята с производства).

У ламп подогревных и современных ламп прямого накала целость нити ещё не свидетельствует о том, что лампа годна для работы, так как лампа и при целой нити может не иметь эмиссии.

Кроме того, целость нити и даже наличие эмиссии ещё не обозначают, что лампа совершенно пригодна для работы, потому что в лампе могут быть короткие замыкания между анодом и сеткой и т. д.

Чем отличается полноценная лампа от неполноценной?

На ламповых заводах все лампы, перед отправлением их с завода проверяются и осматриваются. Заводские нормы предусматривают известные допуски параметров ламп, и лампы, удовлетворяющие этим допускам, т. е. лампы, параметры которых не выходят за пределы этих допусков, считаются полноценными лампами.

Лампа же, у которой хотя бы один из параметров выходит за пределы этих допусков, считается неполноценной. К неполноценным относятся также и лампы, имеющие внешний брак, например, криво поставленные электроды, криво насажанный баллон, трещины, царапины на цоколе и т. д.

На лампы такого рода ставится клеймо “неполноценная” или “2-й сорт” и они выпускаются в продажу по пониженной цене. Обычно неполноценные лампы в отношении работоспособности мало чем отличаются от полноценных.

При покупке неполноценных ламп желательно выбирать такую, у которой имеется явный внешний брак, так как подобная неполноценная лампа почти всегда имеет совершенно нормальные параметры.

Что называется катодом лампы?

Катодом лампы называется тот электрод, который при нагревании излучает электроны, поток которых образует анодный ток лампы.

У ламп с прямым накалом электроны излучаются непосредственно из нити накала. Следовательно, в лампах с прямым накалом нить накала является одновременно и катодом. К числу таких ламп относятся лампы УО-104, все бариевые лампы, кенотроны.

Рис. 3. Что такое лампы с прямым накалом.

В подогревной лампе нить накала не является её катодом, а используется только для подогревания до нужной температуры фарфорового цилиндрика, внутри которого проходит эта нить.

На этот цилиндрик надевается никелевый чехол с нанесённым на него специальным активным слоем, излучающим при нагревании электроны. Этот излучающий электроны слой и является катодом лампы.

Вследствие большой тепловой инерции фарфорового цилиндрика, он не успевает охладиться во время перемен направления тока и потому фон переменного тока при работе приёмника практически не будет заметен.

Подогревные лампы иначе называются лампами с косвенным подогревом или с косвенным накалом, а также лампами с эквипотенциальным катодом.

Рис. 4. Что такое лампа с подогревом.

Почему делают лампы с косвенным накалом, когда было бы проще делать лампы с прямым накалом и толстой нитью?

Если лампу с прямым накалом накаливать переменным током, то обычно прослушивается шум переменного тока. Этот шум в значительной степени объясняется тем, что при переменах направления тока и при спадании в эти моменты тока до нуля, нить лампы несколько охлаждается и эмиссия её уменьшается.

Избежать шума переменного тока казалось можно бы, делая нить накала очень толстой, так как толстая нить не будет успевать сколько-нибудь значительно охлаждаться.

Однако, практически применять лампы с такими нитями очень невыгодно, так как они будут потреблять на накал очень большой ток. Кроме того нужно отметить, что фон переменного тока, при питании нити накала, происходит не только вследствие периодического остывания нити.

Фон в известной степени зависит и от того, что потенциал нити накала 50 раз в минуту меняет свой знак, а так как сетка лампы в схеме соединяется с нитью накала, то эта перемена направления передаётся сетке, вызывает пульсацию анодного тока, которая и слышна в громкоговорителе в виде фона.

Поэтому гораздо выгоднее делать лампы с косвенным подогревом, так как такие лампы свободны от перечисленных недостатков.

Что такое эквипотенциальный катод?

Эквипотенциальным катодом называется подогревный катод. Применяется название “эквипотенциальный” потому, что потенциал по всей длине катода одинаков.

В катодах прямого накала потенциал не одинаков: он изменяется в 4-вольтовых лампах в пределах от 0 до 4 В, в 2-вольтовых лампах от 0 до 2 В.

Что такое лампа с активированным катодом?

Электронные лампы имели ранее чисто вольфрамовый катод. Значительная эмиссия у этих катодов начинается только при очень высокой температуре (около 2 400°).

Для создания этой температуры нужен сильный ток и таким образом лампы с вольфрамовым катодом очень не экономичны. Было замечено, что при покрывании катодов окислами так называемых щёлочноземельных металлов, эмиссия из катодов начинается при значительно более низкой температуре (800-1 200°) и поэтому для соответствующего накала лампы нужен значительно более слабый ток, т. е. такая лампа становится более экономичной в расходовании батарей или аккумуляторов.

Такие катоды, покрытые окислами щёлочноземельных металлов, называются активированными, а процесс такого покрывания называется активированием катода. Наиболее распространённым активатором в настоящее время является барий.

Какая разница между торированными, карбонированными, оксидными и бариевыми лампами?

Разница между этими типами ламп заключается в методе обработки (активирования) катодов ламп. Для повышения эмиссионной способности, катод покрывается слоем тория, оксида, бария.

Лампы с катодом, покрытым торием, называются торированными. Лампы, покрытые слоем бария, называются бариевыми. Оксидные лампы тоже, в большинстве случаев, являются бариевыми лампами, а разница в их названии объясняется только способом активирования катода.

У некоторых ламп (мощных), для прочного закрепления слоя тория, катод после активирования обрабатывается углеродом. Такого рода лампы называются карбонированными.

Можно ли судить по цвету накала лампы о правильности режима лампы?

В некоторых пределах по цвету накала можно судить о правильности величины накала лампы, но для этого нужен известный опыт, так как лампы разных типов имеют неодинаковое свечение катода.

Опасно ли нагревание цоколя лампы?

Нагревание цоколя лампы во время её работы не представляет никакой опасности для лампы и объясняется передачей тепла от баллона и внутренних частей лампы цоколю.

Для чего в некоторых лампах (например, УО-104) внутри баллона против цоколя помещён слюдяной диск?

Этот слюдяной диск служит для защиты цоколя от тепловых излучений ламповых электродов. Без такого “термоэкрана” цоколь лампы слишком нагревался бы. Подобные термоэкраны применяются во всех мощных лампах.

Почему при перевёртывании некоторых ламп слышно, что внутри их цоколя что-то перекатывается?

Подобное перекатывание происходит вследствие того, что на проводнички, которые находятся внутри цоколя и соединяют электроды со штырьками, при цоколёвке ламп надеваются изоляторы - стеклянные трубочки, которые предохраняют выводные проводнички от замыкания между собою.

Эти трубочки в некоторых лампах перемещаются по проводу при перевёртывании ламп.

Почему баллоны современных ламп делаются ступенчатыми?

В лампах старого типа электроды закреплялись только с одной стороны, в том месте лампы, где стойки, на которых укреплены электроды, соединяются со стеклянной ножкой.

При такой конструкции крепления, вследствие упругости держателей, электроды легко подвергаются вибрации. В баллонах современных ламп крепление электродов происходит в двух точках - внизу они крепятся держателями к стеклянной ножке, а вверху - к слюдяной пластинке, которая вжимается в “купол” лампы.

Таким образом, вся конструкция лампы становится более надёжной и жёсткой, что увеличивает долговечность ламп, когда им приходится работать, например, в передвижках и т. п. Лампы такой конструкции менее склонны к микрофонному эффекту.

Для чего баллоны ламп покрываются серебристым или коричневым налётом?

Для нормальной работы ламп степень разрежения воздуха внутри баллона (вакуум) должна быть очень высокой. Давление в лампе исчисляется миллионными долями миллиметра ртутного столба.

Получить такое разрежение при помощи самых совершенных насосов чрезвычайно трудно. Но и это разрежение ещё не предохраняет лампу от ухудшения вакуума в дальнейшем.

В металле, из которого сделаны анод и сетка, может находиться поглощённый (“окклюдированный”) газ, который при работе лампы и разогревании анода может затем выделиться и ухудшить вакуум.

Для борьбы с этим явлением, лампу при откачке её вводят в поле высокой частоты, разогревающее электроды лампы. Ещё до этого вводят заранее в баллон так называемый “геттер” (поглотитель), т. е. такие вещества как магний или барий, которые обладают способностью поглощать газы.

Распыляясь под действием поля высокой частоты, эти вещества поглощают газы. Распылённый геттер осаждается на баллоне лампы и покрывает его видимым снаружи налётом.

Если в качестве геттера был применён магний, то баллон имеет серебристый оттенок, при бариевом геттере налёт получается золотисто-коричневым.

Почему лампы светятся голубым светом?

Наиболее часто лампа даёт голубое газовое свечение, потому что в лампе появился газ. В этом случае, если включить накал лампы и подать напряжение на анод её, весь баллон лампы заполняется голубым светом.

Такая лампа непригодна для работы. Иногда же при работе лампы поверхность анода начинает светиться. Причина этого явления -оседание на анод и сетку лампы активного слоя во время активировки катода.

В этом случае часто светится лишь внутренняя поверхность анода. Это явление не мешает лампе нормально работать и не является признаком её порчи.

Как влияет на работу лампы появление в ней газа?

При наличии в баллоне лампы газа, во время работы происходит ионизация этого газа. Процесс ионизации заключается в следующем: электроны, несущиеся от катода к аноду, встречают на своем пути молекулы газа, ударяются о них и выбивают из них электроны.

Выбитые электроны в свою очередь устремляются к аноду и увеличивают анодный ток, при чём это увеличение анодного тока происходит неравномерно, скачками, и ухудшает работу лампы.

Те молекулы газа, из которых были выбиты электроны и получившие вследствие этого положительные заряды (так называемые ионы) устремляются к отрицательно заряженному катоду и ударяются о него.

При значительных количествах газа в лампе ионная бомбардировка катода может привести к сбиванию с него активного слоя, и даже к перегоранию катода.

Положительно заряженные ионы осаждаются также и на сетке, имеющей отрицательный потенциал, и образуют так называемый ионный ток сетки, направление которого противоположно обычному сеточному току лампы.

Этот ионный ток значительно ухудшает работу каскада, уменьшая усиление и внося подчас искажения.

Что такое термоэлектронный ток?

Электроны, находящиеся в массе какого-нибудь тела, постоянно пребывают в движении. Однако скорость этого движения настолько невелика, что электроны не могут преодолеть сопротивления поверхностного слоя материала и вылететь за пределы его.

Если тело это нагревать, то скорость движения электронов возрастёт и в конце концов может дойти до такого предела, что электроны вылетят за пределы тела.

Такие электроны, появление которых обусловлено нагреванием тела, носят название термоэлектронов, а ток, образованный этими электронами, называется термоэлектронным током.

Что такое эмиссия?

Эмиссией называется излучение электронов катодом лампы.

Когда лампа теряет эмиссию?

Потеря эмиссии наблюдается только у ламп с активированным катодом. Потеря эмиссии является следствием исчезновения активного слоя, что может происходить по разным причинам, например, от перекала при подаче более высокого напряжения накала, чем нормальное, а также при наличии в баллоне газа и происходящей вследствие этого ионной бомбардировки катода (см. вопрос 125).

Что называется режимом лампы приёмника?

Режимом работы лампы называется комплекс всех постоянных напряжений, которые подаются на лампу, т. е. напряжение накала, напряжение анода, напряжение на экранирующей сетке, смещение на управляющей сетке и т. д.

Если все эти напряжения соответствуют требуемым для данной лампы напряжениям, то лампа работает в правильном режиме.

Что значит поставить лампу в нужный режим работы?

Это значит, что на все электроды должны быть поданы такие напряжения, которые соответствуют указанным в паспорте лампы или в инструкции.

Если в описании приёмника не имеется специальных указаний о режиме лампы, то следует руководствоваться теми данными режима, которые приведены в паспорте лампы.

Что значит выражение “лампа заперта”?

Под “запиранием” лампы подразумевается тот случай, когда на управляющей сетке лампы создаётся столь большой отрицательный потенциал, что анодный ток прекращается.

Такое запирание может происходить при слишком большом отрицательном смещении на сетке лампы, а также при обрыве в цепи сетки лампы. В этом случае электроны, осевшие на сетке, не имеют возможности стечь на катод и этим “запирают” лампу.

Электронная лампа

Российская экспортная радиолампа 6550C

Электро́нная ла́мпа , радиола́мпа - электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов , движущихся в вакууме или разрежённом газе между электродами .

Радиолампы массово использовались в ХХ веке как активные элементы электронной аппаратуры (усилители, генераторы, детекторы, переключатели и т.п.). В настоящее время практически полностью вытеснены полупроводниковыми приборами. Иногда ещё применяются в мощных высокочастотных передатчиках, высококачественной аудиотехнике.

Электронные лампы, предназначенные для освещения (лампы-вспышки, ксеноновые лампы , и натриевые лампы), радиолампами не называются и обычно относятся к классу осветительных приборов.

Принцип действия

Электронная лампа RCA "808"

Вакуумные электронные лампы с подогреваемым катодом

  • В результате термоэлектронной эмиссии электроны покидают поверхность катода.
  • Под воздействием разности потенциалов между анодом и катодом электроны достигают анода и образуют анодный ток во внешней цепи.
  • С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.

В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.

Газонаполненные электронные лампы

Основным для этого класса устройств является поток ионов и электронов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться образованием электрического разряда в газе за счёт напряжённости электрического поля.

История

По способу подогрева катоды подразделяются на катоды прямого и косвенного накала.

Катод прямого накала представляет собой металлическую нить. Лампы прямого накала потребляют меньшую мощность и быстрее разогреваются, однако, обычно имеют меньший срок службы, при использовании в сигнальных цепях требуют питания накала постоянным током, а в ряде схем неприменимы из-за влияния разницы потенциалов на разных участках катода на работу лампы.
Катод косвенного накала представляет собой цилиндр, внутри которого располагают нить накала (подогреватель). Такие лампы называются лампами косвенного накала.

Катоды ламп активируют металлами, имеющими малую работу выхода . В лампах прямого накала для этого обычно применяют торий , в лампах косвенного накала - барий . Несмотря на наличие тория в катоде, лампы прямого накала не представляют опасности для пользователя, поскольку его излучение не выходит за пределы баллона.

Анод

Анод электронной лампы

Положительный электрод. Выполняется в форме пластины, чаще коробочки имеющей форму цилиндра или параллелепипеда. Изготавливается обычно из никеля или молибдена, иногда из тантала и графита.

Сетка

Между катодом и анодом располагаются сетки , которые служат для управления потоком электронов и устранения побочных явлений, возникающих при движении электронов от катода к аноду.

Сетка представляет собой решетку из тонкой проволоки или чаще выполнена в виде проволочной спирали, навитой на несколько поддерживающих стоек (траверс). В стержневых лампах роль сеток выполняет система из нескольких тонких стержней, параллельных катоду и аноду, и физика их работы иная, чем в традиционной конструкции.

По назначению сетки подразделяются на следующие виды:

В зависимости от назначения лампы, она может иметь до семи сеток. В некоторых вариантах включения многосеточных ламп, отдельные сетки могут выполнять роль анода. Например, в генераторе по схеме Шембеля на тетроде или пентоде собственно генератором служит «виртуальный» триод, образованный катодом, управляющей сеткой и экранирующей сеткой в качестве анода .

Баллон

Основные типы

Малогабаритные («пальчиковые») радиолампы

Основные типы электронных вакуумных ламп:

  • Диоды (легко делаются на большие напряжения, см кенотрон)
  • лучевые тетроды и пентоды (как разновидности этих типов)
  • комбинированные лампы (фактически включают 2 или более ламп в одном баллоне)

Современные применения

Металлокерамический генераторный триод ГС-9Б с воздушным охлаждением (СССР)

Высокочастотная и высоковольтная мощная техника

  • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны , клистроны , т. н. радиолампа бегущей волны обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую и просто принципиальной возможности существования) элементной базы.
  • Магнетрон можно встретить не только в радаре , но и в любой микроволновой печи.
  • При необходимости выпрямления или быстрой коммутации нескольких десятков кВ, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, кенотрон обеспечивает приемлемую динамику на напряжениях до миллиона вольт.

Военная промышленность

Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. Для информации: в единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы , отличавшиеся малыми размерами и большой механической прочностью.

Миниатюрная лампа типа «желудь» (пентод 6Ж1Ж, СССР, 1955 г.)

Космическая техника

Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском.

Повышенная температура среды и радиация

Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

Высококачественная звуковая аппаратура

По субъективному мнению большинства меломанов, «ламповый» звук принципиально отличается от «транзисторного». Существует несколько версий объяснения этих различий, как основанных на научных исследованиях, так и откровенно ненаучных рассуждениях. Одно из главных объяснений различий лампового и транзисторного звука, заключается в "естественности" звучания ламповой аппаратуры. Ламповый звук "объемный" (некоторые называют его "голографическим"), в отличие от "плоского" транзисторного. Ламповый усилитель отчетливо передает эмоции, энергетику исполнителя, "драйв" (за что их обожают гитаристы). Транзисторные усилители с трудом справляются с такими задачами. Нередко, конструкторы транзисторных усилителей используют схожую с лампами схемотехнику (режим работы в классе А, трансформаторы, отсутствие общей отрицательной обратной связи). Общим результатом этих представлений стало «возвращение» ламповой техники в сферу высококачественных усилителей . Объективная (научная) причина такого положения - высокая линейность (но не идеальная) лампы, в первую очередь триода. Транзистор, в первую очередь биполярный, элемент вообще нелинейный, и как правило не может работать без мер по линеаризации.

Достоинства ламповых усилителей:

Простота схем. Её параметры мало зависят от внешних факторов. В результате в ламповом усилителе, как правило, меньше деталей, чем в полупроводниковом.

Параметры ламп слабее зависят от температуры, чем параметры транзистора. Лампы малочувствительны к электрическим перегрузкам. Малое число деталей также весьма способствует надёжности и снижению искажений, вносимых усилителем. В транзисторном усилителе имеются проблемы с "тепловыми" искажениями.

Хорошая согласуемость входа лампового усилителя с нагрузкой. Ламповые каскады имеют очень большое входное сопротивление, что снижает потери и способствует уменьшению количества активных элементов в радиоустройстве. - Простота обслуживания. Если, например, у концертного усилителя прямо во время выступления выходит из строя лампа, то заменить её гораздо проще, чем сгоревший транзистор или микросхему. Но этим на концертах всё равно никто не занимается. Усилителей на концертах всегда в запасе, а ламповых - в двойном запасе (потому что, как ни странно, ламповые усилители значительно чаще ломаются).

Отсутствие некоторых видов искажений, присущих транзисторным каскадам, что благоприятно сказывается на звуке.

При грамотном использовании преимуществ ламп можно создавать усилители, превосходящие транзисторные по качеству звучания в пределах определённых ценовых категорий.

Субъективно винтажный внешний вид при создании имиджевых образцов аппаратуры.

Нечувствительность к радиации вплоть до очень высоких уровней.

Недостатки ламповых усилителей:

Помимо питания анодов, лампы требуют дополнительных затрат мощности на накал. Отсюда низкий КПД, и как следствие - сильный нагрев.

Ламповая аппаратура не может быть мгновенно готова к работе. Требуется предварительный прогрев ламп в течение нескольких десятков секунд. Исключение составляют лампы прямого накала, которые начинают работать сразу.

Выходные ламповые каскады требуется согласовывать с нагрузкой при помощи трансформаторов. Как следствие - сложность конструкции и плохие массо-габаритные показатели за счёт трансформаторов.

Лампы требуют применения высоких напряжений питания, составляющих сотни (а в мощных усилителях - тысячи) вольт. Это накладывает определённые ограничения в плане безопасности при эксплуатации таких усилителей. Также высокое снимаемое напряжение почти всегда требует применения понижающающего выходного трансформатора. При этом любой трансформатор является нелинейным устройством в широком диапазоне частот, что обуславливает внесение нелинейных искажений в звучание на уровне близком к 1% у лучших моделей ламповых усилителей (для сравнения: нелинейные искажения лучших транзисторных усилителей настолько малы, что их невозможно измерить). Для лампового усилителя, можно считать нормальными искажения на уровне 2-3%. Характер и спектр этих искажений отличается от искажений транзисторного усилителя. На субъективном восприятии, обычно это никак не сказывается. Трансформатор - конечно нелинейный элемент. Но его очень часто используют на выходе ЦАПа, где он осуществляет гальваническую развязку (препятствует проникновению помех из ЦАПа), играет роль фильтра ограничивающего полосу, и по видимому, обеспечивает правильный "расклад" фаз сигнала. В итоге, несмотря на все минусы (в первую очередь - высокую стоимость), звучание только выигрывает. Также трансформаторы, не редко, с успехом, используют в транзисторных усилителях.

Лампы имеют ограниченный срок службы. С течением времени параметры ламп меняются, катоды теряют эмиссию (способность испускать электроны), а нить накала может перегореть (большинство ламп работают до отказа 200-1000 часов, транзисторы на три порядка больше). У транзисторов также возможна деградация со временем.

Хрупкость классических ламп со стеклянным баллоном. Одним из решений данной проблемы была разработка в 40-х годах прошлого века ламп с металло-керамическими баллонами, имеющими большую прочность, однако такие лампы не получили широкое распространение.

Некоторые особенности ламповых усилителей:

По субъективному мнению аудиофилов, звучание электрогитар передаётся гораздо лучше, глубже и «музыкальнее» именно ламповыми усилителями. Некоторые объясняют это нелинейностью выходного узла и вносимыми искажениями, которые «ценятся» любителями электрогитар. Это на самом деле не так. Гитаристы используют эффекты связанные с увеличением искажений, но для этого в схему вносятся соответствующие изменения намеренно.

Очевидные недостатки лампового усилителя - хрупкость, большее потребление энергии, нежели у транзисторного, меньший срок службы ламп, большие искажения (об этом, как правило вспоминают, читая технические характеристики, из-за серьёзного несовершенства измерения основных параметров усилителей, многие производители такие данные не приводят, или по другому - два совершенно одинаковых, с точки зрения измеренных параметров, усилителя, могут звучать совершенно по разному), большие габариты и масса аппаратуры, а также стоимость, которая выше, чем у транзисторной и интегральной техники. Энергопотребление качественного транзисторного усилителя, также велико, впрочем его габариты и вес могут быть сопоставимы с ламповым усилителем. В общем, есть такая закономерность, чем "звучнее", "музыкальнее" и т.д., усилитель, тем его габариты и потребляемая мощность больше, а КПД ниже. Конечно, усилитель класса D может быть весьма компактным, а его КПД будет составлять 90%. Вот только что делать со звуком? Если у вас намечается борьба за экономию электроэнергии, то конечно, ламповый усилитель в этом деле не помощник.

Классификация по названию

Маркировки, принятые в СССР/России

Маркировки в других странах

В Европе в 30е годы ведущими производителями радиоламп была принята Единая европейская система буквенно-цифровой маркировки:

- Первая буква характеризует напряжение накала или его ток:

А - напряжение накала 4 В;

В - ток накала 180 мА;

С - ток накала 200 мА;

D - напряжение накала до 1.4 В;

E - напряжение накала 6.3 В;

F - напряжение накала 12.6 В;

G - напряжение накала 5 В;

H - ток накала 150 мА;

К - напряжение накала 2 В;

P - ток накала 300 мА;

U - ток накала 100 мА;

V - ток накала 50 мА;

X - ток накала 600 мА.

- Вторая и последующие буквы в обозначении определяют тип ламп:

B - двойные диоды (с общим катодом);

C - триоды (кроме выходных);

D - выходные триоды;

E - тетроды (кроме выходных);

F - пентоды (кроме выходных);

L - выходные пентоды и тетроды;

H - гексоды или гептоды (гексодного типа);

K - октоды или гептоды (октодного типа);

M - электронно-световые индикаторы настройки;

P - усилительные лампы со вторичной эмиссией;

Y - однополупериодные кенотроны;

Z - двухполупериодные кенотроны.

- Двузначное или трехзначное число обозначает внешнее оформление лампы и порядковый номер данного типа, причем первая цифра обычно характеризует тип цоколя или ножки, например:

1-9 - стеклянные лампы с ламельным цоколем («красная серия»)

1х - лампы с восьмиштырьковым цоколем («11-серия»)

3х - лампы в стеклянном баллоне с октальным цоколем;

5х - лампы с локтальным цоколем;

6х и 7х - стеклянные сверхминиатюрные лампы;

8х и от 180 до 189 - стеклянные миниатюрные с девятиштырьковой ножкой;

9х - стеклянные миниатюрные с семиштырьковой ножкой.

См. также

Газоразрядные лампы

В газоразрядных лампах обычно используется разряд в инертных газах при низких давлениях. Примеры газоразрядных электронных ламп:

  • Газоразрядники для защиты от высокого напряжения (например на воздушных линиях связи, приемниках мощных РЛС и т.п.)
  • Тиратроны (трёхэлектродные лампы - газоразрядные триоды, четырёхэлектродные - газоразрядные тетроды)
  • Ксеноновые , неоновые лампы и другие газоразрядные источники света.

См. также

  • AOpen AX4B-533 Tube - Материнская плата на чипсете Intel 845 Sk478 с ламповым усилителем звука
  • AOpen AX4GE Tube-G - Материнская плата на чипсете Intel 845GE Sk478 с ламповым усилителем звука
  • AOpen VIA VT8188A - Материнская плата на чипсете VIA K8T400M Sk754 С 6-канальным ламповым усилителем звука.
  • Hanwas X-Tube USB Dongle - USB звуковая карта для ноутбуков с поддержкой DTS, имитирующая внешним видом электронную лампу.

Примечания

Ссылки

  • Справочник по отечественным и зарубежным радиолампам. Более 14000 радиоламп
  • Справочники по радиолампам и вся необходимая информация
Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор ·

Электронная лампа - электровакуумный прибор (электровакуумные приборы - приборы для генерации, усиления и преобразования магнитной энергии, в которых рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы жесткой газонепроницаемой оболочкой), действие которого основано на изменении потока электронов (отбираемых от катода и движущихся в вакууме) электрическим полем, формируемым с помощью электродов. в зависимости от значеня выходной мощности электронные лампы делятся на приемно-усилительные лампы (выходная мощность - не свыше 10 Вт) и генераторные лампы (свыше 10 Вт).

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7 см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15-20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Когда в СССР стало известно о создании в США машины ENIAC в АН Украины и в АН СССР была начата разработка первой, отечественной, действующей ЭВМ. Сведения о разработках на Западе поступали отрывочные, и, естественно, документация по первым ЭВМ была недоступна нашим специалистам. Руководителем разработки был назначен Сергей Александрович Лебедев. Разработка велась под Киевом, в секретной лаборатории в местечке Феофания. Малая электронная счетная машина (МЭСМ) - так называлось детище Лебедева и сотрудников его лаборатории - занимала целое крыло двухэтажного здания и состояла из 6 тысяч электронных ламп. Ее проектирование, монтаж и отладка были выполнены в рекордно быстрый срок - за 2 года, силами всего лишь 12 научных сотрудников и 15 техников. Несмотря на то, что МЭСМ по существу была лишь макетом действующей машины, она сразу нашла своих пользователей: к первой ЭВМ выстраивалась очередь киевских и московских математиков, задачи которых требовали использования быстродействующего вычислителя. В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:

  • Ш наличие арифметических устройств, памяти, устройств ввода/вывода и управления;
  • Ш кодирование и хранение программы в памяти, подобно числам;
  • Ш двоичная система счисления для кодирования чисел и команд;
  • Ш автоматическое выполнение вычислений на основе хранимой программы;
  • Ш наличие как арифметических, так и логических операций;
  • Ш иерархический принцип построения памяти;
  • Ш использование численных методов для реализации вычислений.

После Малой электронной машины была создана и первая Большая - БЭСМ-1, над которой С.И. Лебедев работал уже в Москве, в ИТМ и ВТ АН СССР. Одновременно с ИТМ и ВТ и конкурируя с ним, разработкой ЭВМ занималось недавно сформированное СКБ-245 со своей ЭВМ "Стрела".

БЭСМ и "Стрела" составили парк созданного в 1955 году Вычислительного центра АН СССР, на который сразу легла очень большая нагрузка. Потребность в сверхбыстрых (по тем временам) расчетах испытывали математики, ученые-термоядерщики, первые разработчики ракетной техники и многие другие. Когда в 1954 году оперативная память БЭСМ была укомплектована усовершенствованной элементной базой, быстродействие машины (до 8 тысяч операций в секунду) оказалось на уровне лучших американских ЭВМ и самым высоким в Европе. Доклад Лебедева о БЭСМ в 1956 году на конференции в западногерманском городе Дармштадте произвел настоящий фурор, поскольку малоизвестная советская машина оказалась лучшей европейской ЭВМ. В 1958 году БЭСМ, теперь уже БЭСМ-2, в которой память на потенциалоскопах была заменена ЗУ на ферритовых сердечниках и расширен набор команд, была подготовлена к серийному производству на одном из заводов в Казани. Так начиналась история промышленного выпуска ЭВМ в Советском Союзе!

Элементная база первых вычислительных машин - электронные лампы - определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным. Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте. Очень трудоемким и малоэффективным был процесс общения человека с машиной первого поколения. Как правило, сам разработчик, написавший программу в машинных кодах, вводил ее в память ЭВМ с помощью перфокарт и затем вручную управлял ее выполнением. Электронный монстр на определенное время отдавался в безраздельное пользование программисту, и от уровня его мастерства, способности быстро находить и исправлять ошибки и умения ориентироваться за пультом ЭВМ во многом зависела эффективность решения вычислительной задачи. Ориентация на ручное управление определяла отсутствие каких бы то ни было возможностей буферизации программ.


ДП ____________2_2_0_3________гр_4_4_4________________

номер специальности и группы

Рецензент __________________ _____К_у_д_р_я_ш_о_в_а____

подпись и., о., фамилия

Руководитель _______________ _____Э_п_ш_т_е_й_н________

подпись и., о., фамилия

Дипломник _________________ _____Т_к_а_ч_е_н_к_о_В_К__

подпись и., о., фамилия

г. САНКТ-ПЕТЕРБУРГ


Введение. . . . . . . . . . . 3

1. Общая часть

1.1. Описание предметной области. . . . . . 4

1.1.1. Электронные лампы. . . . . . . 4

1.1.2. Расчетные формулы. . . . . . . 11

1.2. Анализ методов решения. . . . . . . 13

1.3. Обзор средств программирования. . . . . . 14

1.4. Описание выбранного языка программирования. . . . 16

2. Специальная часть

2.1. Постановка задачи. . . . . . . . 23

2.1.1. Основание для разработки. . . . . . 23

2.1.2. Назначение программы. . . . . . 23

2.1.3. Технико-математическое описание задачи. . . . 23

2.1.4. Требования к программе. . . . . . 24

2.1.4.1. Требования к функциональным характеристикам. . 24

2.1.4.2. Требования к надёжности. . . . . . 25

2.1.4.3. Требования к техническим средствам. . . . 25

2.2. Описание схемы программы. . . . . . . 26

2.2.1. Описание схемы основной программы. . . . 26

2.2.2. Описание схемы модуля расчета термонапряжений в аноде МГП 26

2.2.3. Описание схемы модуля построения графиков. . . 27

2.3. Текст программы. . . . . . . . 28

2.4. Описание программы. . . . . . . . 33

2.4.1. Общие сведения. . . . . . . 33

2.4.2. Функциональное назначение. . . . . 33

2.4.3. Описание логической структуры. . . . . 33

2.5. Описание процесса отладки программы. . . . . 34

2.6. Пример результатов работы программы. . . . . 35
3. Экономическое обоснование проектируемой программы. . . . 36

4. Мероприятия по обеспечению безопасности жизнедеятельности. . . 40

4.1. Воздействие электрического тока на организм человека



4.2. Заземляющие устройства

Заключение. . . . . . . . . . . 42

Список литературы. . . . . . . . . . 43

Приложение 1. Схема программы. . . . 44

Приложение 2. Экранные формы. . . . 47

Приложение 3. Примеры ошибок. . . . 51


Последние несколько лет слово “компьютер” употребляется всё чаще и чаще. Если раньше компьютерами владели только фирмы с мировым авторитетом, и программы были написаны на языках низкого уровня, то на данный день компьютер имеется почти в каждой квартире, и программы пишутся на языках высокого уровня. В России ежегодно продается более миллиона компьютеров. Современные компьютеры имеют большие возможности: производят числовые расчеты, подготавливают к печати книги, на них создают рисунки, кинофильмы, музыку, осуществляют управление заводами и космическими кораблями. Компьютер является универсальным и довольно простым средством для обработки всех видов информации, используемой человеком.

Данное дипломное задание позволит работникам заводов и КБ уменьшить количество и стоимость макетов проектируемых приборов. Разрабатываемая программа обеспечит расчет температурного поля в теле анода МГП в процессе разогрева после включения прибора, а также возникающих при этом термонапряжений, разрушающе действующих на материал анода. Результаты работы этой программы дадут необходимую исходную информацию для анализа температурных напряжений в теле анода и выбора режимов эксплуатации, сохраняющих ресурс работы и обеспечивающих высокую надежность и долговечность приборов.


ОБЩАЯ ЧАСТЬ

Описание предметной области

Электронные лампы

Электронные лампы применяются для генерации, усиления, или преобразования электрических колебаний в самых разных областях науки и техники.

Принцип работы электронных ламп

Принцип действия всех радиоламп основан на явлении термоэлектронной эмиссии – это увеличение скоростей электронов до таких, что они вылетают из металла с отрицательным зарядом и могут направленно двигаться между электродами, создавая электрический ток. Для этого также необходимо, чтобы им не встречались на пути препятствия, такие как молекулы воздуха – именно поэтому в лампах создается высокий вакуум. Для получения термоэлектронной эмиссии металл надо нагреть примерно до 2000 о К. Удобнее всего нагревать металлическую нить накала электрическим током (ток накала ), как и в осветительных лампах. Такую высокую температуру выдерживает не каждый металл, большинство плавится, из-за этого в первых образцах электронных ламп применялись чисто вольфрамовые нити накала, которые накаливались до белого свечения, откуда и произошло название «лампа». Но такая яркость обходится очень дорого – нужен сильный ток (в пол-ампера для приёмной лампы). Но скоро был найден путь уменьшения тока накала. Исследования показали, что если покрыть вольфрам некоторыми другими металлами или их окислами (бария, стронция и кальция), то выход электронов облегчается (снижается так называемая ”работа выхода”). Для выхода требуются меньшие энергии, а значит и меньшая температура. Современные оксидированные нити накала работают при температуре около 700-900 о С, в связи с этим удается снизить ток накала примерно в 10-20 раз.

Надо заметить, что управление всеми потоками электронов в лампе осуществляется посредством электрических полей, образующихся вокруг электродов с разными зарядами.

Виды электронных ламп

Диод – вакуумный прибор, пропускающий электрический ток только в одном направлении (Рис.1а) и имеющий два вывода для включения в электрическую цепь (плюс вывод накала, конечно), двухэлектродная лампа была изобретена в 1904 г. физиком Дж. Флемингом. Такая электронная лампа представляет собой стеклянный или металлический баллон, из которого выкачан воздух, и двух металлических электродов: накаливаемого катода (-) и холодного анода(+). Катод бывает двух типов: прямого накала и косвенного накала . В первом случае катод представляет собой вольфрамовую нить (чаще покрытую оксидом), по которой проходит накаливающий её ток, а во втором – покрытый слоем металла с малой работой выхода цилиндр, внутри которого находится нить накала, электрически изолированная от катода. Действие катода как источника электронов основано на термоэлектронной эмиссии . На рисунке 1а показано устройство вакуумного диода с катодом прямого накала. Недостатком катодов прямого накала является то, что они не пригодны для питания их переменным током, так как при изменениях тока температура нити успевает измениться, и поток излучаемых электронов пульсирует с частотой питающего тока, поэтому сейчас применяются катоды косвенного накала.

Вольт-амперная характеристика диода (рис. 1е) имеет нелинейный характер – это объясняется накоплением электронов у катода в “облачко”. При отсутствии анодного напряжения электроны к нему не притягиваются, и анодный ток равен нулю. Анодный ток возникает при подаче положительного напряжения на анод, по мере увеличения напряжения анодный ток будет возрастать (на кривой А-Б – быстрее). При большом напряжении (в точке В) сила тока достигает наибольшей величины – это ток насыщения. У диода с активированным (оксидным) катодом не наблюдается замедления роста анодного тока, но при анодном токе выше некоторой предельной величины катод разрушается. Свойства диода оцениваются крутизной характеристики и внутренним сопротивлением лампы.

Если вывод сетки присоединить к катоду, то между сеткой и катодом не будет электрического поля, и витки сетки окажут очень слабое действие на летящие к аноду электроны – в анодной цепи установится ток покоя . Если включить между катодом и сеткой батарею так, что сетка зарядится отрицательно, то последняя начнёт отталкивать электроны обратно к катоду, а анодный ток уменьшится. При значительном отрицательном потенциале сетки даже самые быстрые электроны не смогут преодолеть её отталкивающее действие, и анодный ток прекратится, т.е. лампа будет заперта. Если сеточную батарею присоединить так, чтобы сетка была положительно заряжена относительно катода, то возникшее электрическое поле станет ускорять движение электронов. В этом случае измерительный прибор в цепи анода покажет увеличение тока.

Чем выше потенциал сетки, тем больше становится анодный ток. При этом некоторая часть электронов притягивается и к сетке, создавая сеточный ток , но при правильной конструкции лампы количество этих электронов невелико. Только те электроны, которые окажутся в непосредственной близости от витков сетки, будут притянуты к ней и создадут ток в сеточной цепи – он будет незначителен.

Коэффициент усиления и мощности у триодов различны. При большом анодном токе аноды подвергаются сильной электронной бомбардировке, что приводит к их значительному нагреванию и даже разрушению, поэтому аноды делают массивными, чернят, приваривают специальные охлаждающие ребра или применяют водное охлаждение, о котором рассказано ниже. Водное охлаждение применено и в импульсном генераторном триоде ГИ-11 (БМ), не так давно разработанном петербургскими учеными.

Экранированные лампы могут хорошо работать с небольшими сеточными напряжениями, но иногда при работе тетродов вторичные электроны, выбитые из анода, долетают до экранной сетки, создавая ток и сильные искажения сигнала – это явление называют динатронным эффектом . Пентоды являются решением этой проблемы.

Способ устранения неприятных последствий динатронного эффекта очевиден: надо не пускать вторичные электроны к экранирующей сетке. Это можно сделать введением в лампу еще одной сетки – третьей по счету, которая будет защитной , так получились пентоды – от греческого слова «пента» - пять (рис. 1г). Третья сетка располагается между анодом и экранирующей сеткой и соединяется с катодом, следовательно, оказывается заряженной отрицательно относительно катода. Поэтому вторичные электроны будут отталкиваться этой сеткой обратно к аноду, но в то же время, будучи достаточно редкой, эта защитная сетка не препятствует электронам основного анодного тока. У современных (на 1972 год) высокочастотных пентодов коэффициент усиления доходит до нескольких тысяч, а емкость сетка – анод измеряется тысячными долями пикофарады. Благодаря этому пентод является прекрасной лампой для усиления колебаний высокой частоты. Но пентоды с большим успехом применяются и для усиления низкой (звуковой) частоты, в частности в оконечных каскадах.

Конструктивно низкочастотные пентоды несколько отличаются от высоко- частотных. Для усиления НЧ не нужно иметь слишком большие коэффициенты усиления, но зато необходимо иметь большой прямолинейный участок характеристики, так как приходится усиливать большие напряжения, поэтому делают сравнительно редкие экранирующие сетки. При этом коэффициент усиления не получается очень большим, а вся характеристика сдвигается влево, поэтому больший её участок становится пригодным для использования. Низкочастотные пентоды должны отдавать большую мощность, следовательно, делаются массивными и их аноды нуждаются в охлаждении.

Существуют также и Лучевые тетроды – мощные низкочастотные лампы без защитных сеток, в которых витки экранирующих сеток расположены точно за витками управляющих сеток. При этом поток электронов рассекается на отдельные пучки (лучи), летящие прямо к аноду, а он отнесен несколько дальше и выбитые из него вторичные электроны не могут долететь до экранирующей сетки, а притягиваются анодом обратно, не нарушая нормальной работы лампы. Коэффициент усиления у таких ламп в несколько раз выше, чем у обычных тетродов, т.к. электроны от катода летят прямыми лучами между витками сеток и не разлетаются, а направляются к аноду полем экранирующих пластин, расположенных на путях возможной утечки около анода лампы, которые подключены к минусу источника питания через катод. У лучевых ламп удается создать очень выгодную форму характеристики, позволяющую получить большую выходную мощность при небольшом напряжении сигнала на сетке.

Конструкции радиоламп

Для аппаратуры малой мощности, такой как радиоприемник, лампы старались делать как можно меньших размеров (пальчиковые лампы). Их часто называют приёмно-усилительными лампами. Существуют и сверхминиатюрные лампы (толщиной с карандаш) с мягкими выводами. В мощной аппаратуре радиоузлов и в радиопередатчиках применяют лампы значительно больших размеров, развивающие в анодной цепи гораздо большую мощность. Такие лампы имеют массивные аноды с принудительным воздушным или водяным охлаждением. Для этого аноды делают конусоподобными из меди или других термоустойчивых металлов, к ним приваривают полые ребра или трубки, по которым пропускают охлажденную воду. Мощные лампы с медными анодами и водяным охлаждением, изобретенные в 1923 г. М. А. Бонч-Бруевичем, применяются в мощных радиопередатчиках всего мира (там, где нельзя применить полупроводниковые приборы).

Существует несколько способов охлаждения анода:

· принудительное воздушное;

· принудительное водное;

· естественное (рассеяние).

Для уменьшения нагрева анода его часто снабжают ребрами или крылышками.

За время существования радиоламп их конструкции претерпели серьезные изменения. Первые образцы приемно-усилительных ламп отличались довольно значительными размерами и потребляли очень большой ток накала. По мере совершенствования конструкций и технологии производства размеры ламп уменьшались, лампы становились более прочными, экономичными, их качество улучшалось. Приемно-усилительные лампы наших дней очень мало похожи на первые радиолампы, хотя основные принципы их работы не изменились.

Современные приемно-усилительные лампы выпускаются почти исключительно пальчикового типа (длиной 5-7 сантиметров). Внутренняя арматура и выводы всех электродов укреплены непосредственно на плоском стеклянном дне лампы и выходят наружу в виде тонких, но прочных штырьков, расположенных несимметрично. К каждому из штырьков присоединяется вывод одного из электродов лампы. Подключение электродов (цоколевка) ламп одного и того же типа всегда совершенно одинакова.

Для обеспечения правильности вставления штырьков лампы в панельку применяют два способа: несимметричное расположение штырьков и создание направляющего ключа на цоколе из пластмассы (Рис. 1д), который входит в паз, расположенный на панельке.

В массовом производстве аноды ламп имеют цилиндрическую форму и сделаны из меди или термоустойчивых сплавов. Для упрощения и удешевления моделирования и производства таких электронных ламп и предназначена разрабатываемая программа.


Конструкции и обозначения электронных ламп на схемах

А) Б)

В)

Г)

Д) Е)

а) – диод с прямым накалом (две конструкции и схематическое обозначение);

б) – схема триода с косвенным накалом (с третьим электродом – сеткой);

в) – конструкция и схематическое обозначение тетрода с прямым накалом.

г) – конструкция и схематическое обозначение пентода с прямым накалом.

д) – октальный цоколь радиолампы с направляющим (в панельку) выступом.

е) – анодная вольт-амперная характеристика вакуумного диода.

Расчетные формулы

Распределение температуры по толщине стенки анода определяется решением дифференциального уравнения:

на решение которого накладываются граничные условия:

На внутренней (нагреваемой) поверхности:

(2)

На наружной (охлаждаемой) поверхности:

(3)

с начальным условием: T(r,0) = T o = 300 о K. (4)

Уравнение (1) интегрируется до тех пор, пока не достигается установившийся режим (завершается разогрев), т.е. выполняется условие .

В уравнении (3): ε – коэффициент черноты поверхности; σ о = 5.67*10 -12 – постоянная Стефана-Больцмана.

По результатам интегрирования уравнения (1) термонапряжение в аноде вычисляется в виде:

(5)

T ср. (r,t) – средняя температура анода в сечении с координатой r .

Интеграл в уравнении (5) вычисляется методом Симпсона :

Где число разбиений n = 2m – чётное, а шаг h = b-a/2m. M – число пространственных интервалов.

Формулы расчета температур в конечно-разностном представлении:

Граничные условия на поверхностях анода:

R внутр. : . (2’)

R наруж.: (3’)

Здесь: i, j – номера пространственного и временного интервалов, k – наружная стенка;

Δr и Δ t – шаги пространственно-временной сетки по координате и по времени;

n – число пространственных интервалов в пределах толщины стенки анода (R нар – R вн).

Принятые в проекте обозначения:

R нар, R внутр. – наружный и внутренний радиусы анода (см);

t – время работы после включения накала (сек);

r – координата в сечении анода (см); R вн. ≤ r ≤ R нар.

T(r,t) – температура в сечении с координатой ‘r’ в момент времени ‘t’;

λ – теплопроводность материала анода (вт/см.*град.);

α – температуропроводность материала анода (медь=1.1);

E – модуль упругости (кг/см²);

α т – коэффициент линейного расширения (1/град);

ε коэффициент черноты поверхности;

σ о = 5.67*10 -12 (Вт/См 2 град 4) – постоянная Стефана-Больцмана;

q– подводимая к аноду мощность (вт / см²);

T 0 – температура окружающей среды (град K).


Анализ методов решения

Дифференциальное уравнение (1) – (3), (4) можно решить двумя способами: неявным (абсолютно сходящимся) методом и явным (относительно сходящимся) методом конечно-разностной аппроксимации. Различие этих методов состоит в том, что в неявном методе шаг Δt задается любым, а в явном методе он ограничен и берется очень маленьким.

Отсюда вытекает различие в условиях устойчивости схем: .

В явной схеме ω<1/2, а в неявной схеме ω не ограничена. Это приводит к тому, что в явной схеме значение температуры в данный момент времени находится с помощью значения температуры в предыдущий момент времени, а в неявной схеме значение температуры в данный момент времени находится с помощью значения температуры в тот же момент времени.

Уравнение неявной схемы сразу решить нельзя, надо составлять систему уравнений, что на много усложняет схему программы. Преимущество неявной схемы в том, что, задавая нужный шаг, можно резко сократить количество итераций, в то время как в явном методе количество итераций будет составлять десятки тысяч. Однако при современном быстродействии компьютеров разница в несколько тысяч итераций во время работы программы не составит и секунды, а простой и удобный алгоритм способствует более качественному и быстрому написанию и отладке программы. Поэтому при разработке данной программы применялся явный метод конечно – разностной аппроксимации.